31 research outputs found

    C型肝炎ウイルスのNS3ヘリケースを阻害する海洋天然物由来新規化合物の同定

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Preferential association of hepatitis C virus with CD19+ B cells is mediated by complement system

    Get PDF
    Extrahepatic disease manifestations are common in chronic hepatitis C virus (HCV) infection. The mechanism of HCV-related lymphoproliferative disorders is not fully understood. Recent studies have found that HCV in peripheral blood mononuclear cells (PBMCs) from chronically infected patients is mainly associated with CD19+ B cells. To further elucidate this preferential association of HCV with B cells, we used in vitro cultured virus and uninfected PBMCs from healthy blood donors to investigate the necessary serum components that activate the binding of HCV to B cells. First, we found that the active serum components were present not only in HCV carriers, but also in HCV recovered patients and HCV negative healthy blood donors and that the serum components were heat labile. Second, the preferential binding activity of HCV to B cells could be blocked by anti-complement C3 antibodies. In experiments with complement-depleted serum and purified complement proteins, we demonstrated that complement proteins C1, C2, and C3 were required to activate such binding activity. Complement protein C4 was partially involved in this process. Third, using antibodies against cell surface markers, we showed that the binding complex mainly involved CD21 (complement receptor 2), CD19, CD20, and CD81; CD35 (complement receptor 1) was involved but had lower binding activity. Fourth, both anti-CD21 and anti-CD35 antibodies could block the binding of patient-derived HCV to B cells. Fifth, complement also mediated HCV binding to Raji cells, a cultured B cell line derived from Burkitt´s lymphoma.CONCLUSION:In chronic HCV infection, the preferential association of HCV with B cells is mediated by the complement system, mainly through complement receptor 2 (CD21), in conjunction with the CD19 and CD81 complex. This article is protected by copyright. All rights reserved.Fil: Wang, Richard. National Institutes of Health; Estados UnidosFil: Baré, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. National Institutes of Health; Estados UnidosFil: De Giorgi, Valeria. National Institutes of Health; Estados UnidosFil: Matsuura, Kentaro. Nagoya City University Graduate School of Medicine; Japón. National Institutes of Health; Estados UnidosFil: Salam, Kazi Abdus. National Institutes of Health; Estados Unidos. University of Rajshahi; IndiaFil: Grandinetti, Teresa. National Institutes of Health; Estados UnidosFil: Schechterly, Cathy. National Institutes of Health; Estados UnidosFil: Alter, Harvey J.. National Institutes of Health; Estados Unido

    Lipoid proteinosis: identification of a novel nonsense mutation c.1246C>T:p.R416X in ECM1 gene from Bangladesh

    Get PDF
    Lipoid proteinosis is a rare multisystem genodermatosis inherited as autosomal recessive trait. We report a case of lipoid proteinosis in a 10-year-old boy born to first-degree consanguineous parents presented with marked hoarseness of voice, accelerated photoaging appearance, enlarged and erythematous tongue with restricted movement and widespread dermatoses. Biopsy of oral mucosa revealed Periodic acid-Schiff (PAS)-positive amorphous eosinophilic hyaline deposits. Mutational analysis revealed a homozygous nonsense mutation with C to T substitution at nucleotide position 1246(c.1246C>T) in exon-8 of the extracellular matrix protein 1 gene leading to a stop codon. Both the parents were unaffected heterozygous carriers. To our knowledge, this is the first case report of lipoid proteinosis with evidence of a novel nonsense genetic mutation from Bangladesh

    Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia

    Get PDF
    Hepatitis C virus (HCV) is a causative agent of acute and chronic hepatitis, leading to the development of hepatic cirrhosis and hepatocellular carcinoma. We prepared extracts from 61 marine organisms and screened them by an in vitro fluorescence assay targeting the viral helicase (NS3), which plays an important role in HCV replication, to identify effective candidates for anti-HCV agents. An ethyl acetate-soluble fraction of the feather star Alloeocomatella polycladia exhibited the strongest inhibition of NS3 helicase activity, with an IC50 of 11.7 µg/mL. The extract of A. polycladia inhibited interaction between NS3 and RNA but not ATPase of NS3. Furthermore, the replication of the replicons derived from three HCV strains of genotype 1b in cultured cells was suppressed by the extract with an EC50 value of 23 to 44 µg/mL, which is similar to the IC50 value of the NS3 helicase assay. The extract did not induce interferon or inhibit cell growth. These results suggest that the unknown compound(s) included in A. polycladia can inhibit HCV replication by suppressing the helicase activity of HCV NS3. This study may present a new approach toward the development of a novel therapy for chronic hepatitis C

    Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic arsenic exposure has been shown to cause liver damage. However, serum hepatic enzyme activity as recognized on liver function tests (LFTs) showing a dose-response relationship with arsenic exposure has not yet been clearly documented. The aim of our study was to investigate the dose-response relationship between arsenic exposure and major serum enzyme marker activity associated with LFTs in the population living in arsenic-endemic areas in Bangladesh.</p> <p>Methods</p> <p>A total of 200 residents living in arsenic-endemic areas in Bangladesh were selected as study subjects. Arsenic concentrations in the drinking water, hair and nails were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The study subjects were stratified into quartile groups as follows, based on concentrations of arsenic in the drinking water, as well as in subjects' hair and nails: lowest, low, medium and high. The serum hepatic enzyme activities of alkaline phosphatase (ALP), aspartate transaminase (AST) and alanine transaminase (ALT) were then assayed.</p> <p>Results</p> <p>Arsenic concentrations in the subjects' hair and nails were positively correlated with arsenic levels in the drinking water. As regards the exposure-response relationship with arsenic in the drinking water, the respective activities of ALP, AST and ALT were found to be significantly increased in the high-exposure groups compared to the lowest-exposure groups before and after adjustments were made for different covariates. With internal exposure markers (arsenic in hair and nails), the ALP, AST and ALT activity profiles assumed a similar shape of dose-response relationship, with very few differences seen in the higher groups compared to the lowest group, most likely due to the temporalities of exposure metrics.</p> <p>Conclusions</p> <p>The present study demonstrated that arsenic concentrations in the drinking water were strongly correlated with arsenic concentrations in the subjects' hair and nails. Further, this study revealed a novel exposure- and dose- response relationship between arsenic exposure metrics and serum hepatic enzyme activity. Elevated serum hepatic enzyme activities in the higher exposure gradients provided new insights into arsenic-induced liver toxicity that might be helpful for the early prognosis of arsenic-induced liver diseases.</p

    Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    Get PDF
    Currently, hepatitis C virus (HCV) infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs) against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir) have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin). The new therapy has significantly improved sustained virologic response (SVR); however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors

    Monitoring groundwater potential dynamics of north-eastern Bengal Basin in Bangladesh using AHP-Machine learning approaches

    No full text
    Groundwater is a vital natural resource that plays a critical role in sustaining agriculture, forest ecosystems, industry, and household uses. However, due to natural and anthropogenic factors, groundwater is facing alarming declines. Therefore, this study aimed to assess the potential groundwater zones (PGWZ) in the north-eastern Bengal Basin of Bangladesh between 1990 and 2021 using satellite images, public and field data pertaining to ten environmental parameters. The study utilized analytical hierarchy process to identify PGWZ and evaluated the effectiveness of machine learning (ML) algorithms (K-nearest neighbors, support vector machine, XGBoost, decision tree, and random forest) for PGWZ classification. The findings indicated a decline in groundwater potential over the decades, which was categorized into five distinct zones based on the relative groundwater potential. The very high PGWZ decreased from 2.19% to 1.3%, and high PGWZ from 34.57% to 28.24%, while there was a sharp increase in the poor status of PGWZ (very low, low, and medium zones) over the same periods. The accuracy and kappa coefficients of the ground data validation for the estimated PGWZ map were 84.34% and 79.61%, respectively. According to accuracy, precision, recall, and f1-score, five ML models are reliable predictors of PGWZ. RF achieved the highest accuracy of 92.33%, while XGBoost achieved an accuracy of 90.31%. Both models demonstrated superior prediction performance for PGWZ based on the normalized leverage factor. The study attributes the alteration of groundwater potential to changes in land use and land covers, increased land surface temperatures, decreased rainfall, and changes in soil erosion in the study region over the three decades. The results of this study offer valuable insights for decision-makers to make informed decisions for the sustainable and responsible management of groundwater resources
    corecore