78 research outputs found

    A Lotting Method for Electronic Reverse Auctions

    Get PDF
    An increasing number of commercial companies are using online reverse auctions for their sourcing activities. In reverse auctions, multiple suppliers bid for a contract from a buyer for selling goods and/or services. Usually, the buyer has to procure multiple items, which are typically divided into lots for auctioning purposes. By steering the composition of the lots, a buyer can increase the attractiveness of its lots for thesuppliers, which can then make more competitive offers, leading to larger savings for the procuring party. In this paper, a clustering-based heuristic lotting method is proposed for reverse auctions. Agglomerative clustering is used for determining the items that will be put in the same lot. A suitable metric is defined, which allows the procurer to incorporate various approaches to lotting. The proposed lotting method has been tested for the procurement activities of a consumer packaged goods company. The results indicate that the proposed strategy leads to 2-3% savings, while the procurement experts confirm that the lots determined by the proposed method are acceptable given the procurement goals

    Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments

    Get PDF
    Advances in computational methods have led, in the world of financial services, to huge databases of client and market information. In the past decade, various computational intelligence (CI) techniques have been applied in mining this data for obtaining knowledge and in-depth information about the clients and the markets. This paper discusses the application of fuzzy clustering in target selection from large databases for direct marketing (DM) purposes. Actual data from the campaigns of a large financial services provider are used as a test case. The results obtained with the fuzzy clustering approach are compared with those resulting from the current practice of using statistical tools for target selection

    A Theoretical Analysis of Cooperative Behavior in Multi-Agent Q-learning

    Get PDF
    A number of experimental studies have investigated whether cooperative behavior may emerge in multi-agent Q-learning. In some studies cooperative behavior did emerge, in others it did not. This report provides a theoretical analysis of this issue. The analysis focuses on multi-agent Q-learning in iterated prisoner’s dilemmas. It is shown that under certain assumptions cooperative behavior may emerge when multi-agent Q-learning is applied in an iterated prisoner’s dilemma. An important consequence of the analysis is that multi-agent Q-learning may result in non-Nash behavior. It is found experimentally that the theoretical results derived in this report are quite robust to violations of the underlying assumptions

    A Conceptual Model of Investor Behavior

    Get PDF
    Based on a survey of behavioral finance literature, this paper presents a descriptive model of individual investor behavior in which investment decisions are seen as an iterative process of interactions between the investor and the investment environment. This investment process is influenced by a number of interdependent variables and driven by dual mental systems, the interplay of which contributes to boundedly rational behavior where investors use various heuristics and may exhibit behavioral biases. In the modeling tradition of cognitive science and intelligent systems, the investor is seen as a learning, adapting, and evolving entity that perceives the environment, processes information, acts upon it, and updates his or her internal states. This conceptual model can be used to build stylized representations of (classes of) individual investors, and further studied using the paradigm of agent-based artificial financial markets. By allowing us to implement individual investor behavior, to choose various market mechanisms, and to analyze the obtained asset prices, agent-based models can bridge the gap between the micro level of individual investor behavior and the macro level of aggregate market phenomena. It has been recognized, yet not fully explored, that these models could be used as a tool to generate or test various behavioral hypothesis

    A Temporal Web Ontology Language

    Get PDF
    The Web Ontology Language (OWL) is the most expressive standard language for modeling ontologies on the Semantic Web. In this paper, we present a temporal extension of the very expressive fragment SHIN(D) of the OWL-DL language resulting in the tOWL language. Through a layered approach we introduce 3 extensions: i) Concrete Domains, that allows the representation of restrictions using concrete domain binary predicates, ii) Temporal Representation, that introduces timepoints, relations between timepoints, intervals, and Allen’s 13 interval relations into the language, and iii) TimeSlices/Fluents, that implements a perdurantist view on individuals and allows for the representation of complex temporal aspects, such as process state transitions. We illustrate the expressiveness of the newly introduced language by providing a TBox representation of Leveraged Buy Out (LBO) processes in financial applications and an ABox representation of one specific LBO

    Neural Networks for Target Selection in Direct Marketing

    Get PDF
    Partly due to a growing interest in direct marketing, it has become an important application field for data mining. Many techniques have been applied to select the targets in commercial applications, such as statistical regression, regression trees, ne

    Pattern-Based Target Selection Applied to Fund Raising

    Get PDF
    This paper proposes a new algorithm for target selection. This algorithm collects all frequent patterns (equivalent to frequent item sets) in a training set. These patterns are stored e?ciently using a compact data structure called a trie. Fo

    Fuzzy clustering with Minkowski distance

    Get PDF
    Distances in the well known fuzzy c-means algorithm of Bezdek (1973) are measured by the squared Euclidean distance. Other distances have been used as well in fuzzy clustering. For example, Jajuga (1991) proposed to use the L_1-distance and Bobrowski and Bezdek (1991) also used the L_infty-distance. For the more general case of Minkowski distance and the case of using a root of the squared Minkowski distance, Groenen and Jajuga (2001) introduced a majorization algorithm to minimize the error. One of the advantages of iterative majorization is that it is a guaranteed descent algorithm, so that every iteration reduces the error until convergence is reached. However, their algorithm was limited to the case of Minkowski parameter between 1 and 2, that is, between the L_1-distance and the Euclidean distance. Here, we extend their majorization algorithm to any Minkowski distance with Minkowski parameter greater than (or equal to) 1. This extension also includes the case of the L_infty-distance. We also investigate how well this algorithm performs and present an empirical application

    AUK: a simple alternative to the AUC

    Get PDF
    The area under Receiver Operating Characteristic (ROC) curve, also known as the AUC-index, is commonly used for ranking the performance of data mining models. The AUC has many merits, such as objectivity and ease of interpretation. However, since it is class indifferent, its usefulness while dealing with hig
    • …
    corecore