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Abstract

This paper proposes a new algorithm for target selection. This

algorithm collects all frequent patterns (equivalent to frequent item

sets) in a training set. These patterns are stored eÆciently using a

compact data structure called a trie. For each pattern the relative

frequency of the target class is determined. Target selection is achieved

by matching the candidate records with the patterns in the trie. A

score for each record results from this matching process, based upon

the frequency values in the trie. The records with the best score values

are selected. We have applied the new algorithm to a large data set

containing the results of a number of mailing campaigns by a Dutch

charity organization. Our algorithm turns out to be competitive with

logistic regression and superior to CHAID.

1 Introduction

Since the �rst half of the nineties direct marketing has become an impor-

tant application �eld for data mining. In direct marketing, companies or

organizations try to establish and maintain a direct relationship with their

customers in order to target them individually for speci�c product o�ers or

for fund raising. Large databases of customer and market data are main-

tained for this purpose. The customers or clients to be targeted in a speci�c

campaign are selected from the database given di�erent types of informa-

tion such as demographic information and information on the customer's

personal characteristics like profession, age and purchase history. Apart

from commercial �rms and companies, charity organizations also apply di-

rect marketing for fund raising. Charity organizations do not have customers
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in the regular sense of the word, but they must be able to trace people who

are more likely to donate money in order to optimize their fund raising re-

sults.

Many techniques have been applied to select the targets in commercial appli-

cations, such as decision tree methods like CHAID or CART [7], statistical

regression [5], neural computing [14] and fuzzy clustering [12]. In this pa-

per, we propose a new algorithm which we apply to fund raising by a Dutch

charity organization. There is a major di�erence between direct mailing in

a commercial environment and direct mailing for the bene�t of a charity

organization: the response rate to a commercial direct marketing campaign

seldom exceeds 5%, whereas a charity campaign among a group of known

supporters often triggers a much higher response. Modeling of charity cam-

paigns/donations has recently been considered by Jonker et al. [8].

Target selection techniques can be roughly divided into two types: segmen-

tation techniques and scoring techniques. Segmentation is the traditional

tool of marketing science. The set of customers is divided into segments,

each segment having characteristic value ranges for features such as gender,

age, salary, etc. Algorithms based upon decision trees such as CHAID [9],

C4.5 [11] and CART [4] fall into the segmentation category, since the subset

of the input space de�ned by each leaf of the tree may be viewed as a market

segment. The methods of this type have the advantage of comprehensibil-

ity. The other approach is to assign a score to each individual customer,

indicating the likelihood that the customer is a responder. Such techniques,

where each customer is given an individual score, appear to perform better

in terms of response rates. Regression methods such as logistic regression,

neural networks, and some fuzzy set approaches fall into this category, essen-

tially. The technique we propose which we call PatSelect, is an o�shoot of

our classi�cation algorithm [10], which is based on the data mining method

of �nding frequent item sets [1]. The new algorithm considers patterns of

attribute values. Such patterns are similar to segment groups, but they are

not segments in the proper sense in that they overlap strongly. Many over-

lapping patterns are examined to classify a client into a market group. In

this sense, the new method may be regarded as a segmentation technique,

exhibiting the advantage of comprehensibility. Due to the huge number of

patterns considered, a much more �nely grained picture of the market ap-

pears. As we will see, PatSelect performs on an equal level with pure scoring

techniques such as logistic regression. So, it combines the transparency of

segmentation with the scoring bene�ts of regression methods.

The outline of this paper is as follows. In section 2 we introduce the no-
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Figure 1: An example: a data set S

tion of frequent patterns which explains the foundation of our method. In

section 3, the algorithm we propose is outlined and discussed. Finally, our

proposed algorithm is applied to a large real world database of a well known

Dutch charity organization in section 4. This case is extensively described

including the modeling stage. The conclusions are given in section 5.

2 Frequent patterns

In this section, we discuss some de�nitions and facts on frequent patterns.

A data set is a set of records or cases, where each record consists of an n-

tuple (n is �xed) of discrete values. The positions in a record correspond to

attributes. Suppose that we have a data set of customers with n = 4 and

the four attributes are: `income', `married', `children', `credit worthy'. An

instance of a record in this data set is (5, yes, 3, yes), which means that

the customer related to this record has income group equal to 5, is married,

has 3 children and is credit worthy. As mentioned above, we require discrete

values. If an attribute has continuous values, discretization is required. One

attribute is appointed to be the target attribute. The values which are taken

by the target attribute are called classes or class labels. Figure 1 shows a

simple example of a data set, which has four attributes: a target attribute

and three other ones called a, b and c.

Suppose that a data set D has n� 1 non-target attributes x1; x2; : : : ; xn�1,
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Figure 2: The frequent patterns of S stored into a trie.

and target class label y. A pattern (also called an item set in data mining

literature) is de�ned as a series of m equalities of the form (xi1 = vi1 ; xi2 =

vi2 ; : : : ; xim = vim). where vi
k
is a value that can be taken by attribute

xi
k
, 1 � k � m. Note that a pattern refers to only non-target attributes.

A record r = (x1; x2; : : : ; xn�1; y) is said to be a supporter of a pattern

P = (xi1 = vi1 ; xi2 = vi2 ; : : : ; xim = vim), if r matches pattern P , i.e., at-

tribute xi
k
occurs in r and has value vi

k
for each k, 1 � k � m. The support

of a pattern P , denoted by supp(P ), is de�ned as the number of supporters

of P . Given a threshold or minimal support (denoted by minsup) a pattern

is called frequent if supp(P ) � minsup. A pattern P
0 is called a subpattern

of P , if each equality in P
0 is also included in P . Clearly, any subpattern of

a frequent pattern is frequent as well.

The best-known algorithm for �nding frequent patterns is Apriori [1]. In

this paper, a hash tree (a tree with a hash table in each node) is proposed

to represent itemsets. We utilize a di�erent data structure which replaces

the hash nodes by nodes with completely �lled arrays of dynamic length.

This data structure is equivalent to a trie [2]. It stores the full collection

of frequent patterns in an eÆcient and compact way. An example of a trie

is shown in Figure 2, which displays the set of all frequent patterns in the

data set of Figure 1 for minsup= 2. Each path from a square in the root of

the trie to a square in any other node (not necessarily a leaf) represents a

frequent pattern, e.g. (a = 4; b = 2) or (a = 4; b = 2; c = 1). The patterns

(a = 3) and (c = 2) and any extensions of those patterns are infrequent

and hence not included in the trie of Figure 2. Similarly to the hash tree

in Apriori, the trie is built up level by level. First, the root consisting of

frequent patterns of length 1 is constructed. Next, the nodes representing
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the frequent patterns of length 2 (the children of the root) are added, etc.

For each level of the trie a complete pass through the data is carried out.

Thus, the maximum number of passes through the data is n� 1.

As mentioned before, supp(P ) is equal to the number of the supporters

of P . For a given class y and a pattern P , the numbers of supporters of

P with a class label y is denoted by supp(y; P ), The relative frequency or

brie
y the frequency of a class y is denoted by fr(y; P ) and is de�ned as:

fr(y; P ) =
number of supporters of P with class y

total number of supporters of P
=

supp(y; P )

supp(P )
(1)

The following examples illustrate the de�nitions. Let (c = 3) be pattern P

and let (b = 2; c = 3) be pattern Q in the data set of Figure 1. The fol-

lowing equalities hold for P : supp(P ) = 8, supp(1; P ) = 3, supp(2; P ) = 5,

fr(1; P ) = 3=8, fr(2; P ) = 5=8. For Q we have: supp(Q) = 4, supp(1; Q) = 3,

supp(2; Q) = 1, fr(1; Q) = 3=4, fr(2; Q) = 1=4. The relative frequencies and

the supports of each pattern are stored in the trie during the build-up of the

trie.

In [10], it is shown that for classi�cation a trie is an appropriate alternative

to a decision tree as used in C4.5, CART or CHAID. The set of all possible

values taken by the non-attribute values (x1; x2; : : : ; xn�1), is called the in-

put space, denoted by X . In a decision tree as well as in a trie of patterns

each node n or rather each path from the root to a node n corresponds to

a subset of X . However, there is a major di�erence between a trie of pat-

terns and a decision tree. In a decision tree, the subsets corresponding to

the leaves make up a partition of the input space X . An algorithm using

a decision tree classi�es an input record x = (x1; x2; : : : ; xn�1) by looking

for the unique subset including x in that partition. In a trie, there may

be many patterns that match x. When using a trie to classify x, one looks

for all patterns matching x and one chooses one that is best according to a

certain criterion.

3 A new algorithm for target selection

In this section, our new target selection algorithm Patselect is introduced.

This algorithm is derived from a classi�cation method, called Patmat, which

was published recently in [10].

Target selection addresses the following problem: which records are likely to
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belong to a particular target class t? In order to describe the algorithm, we

need to introduce a score function score(r) for each record r. The function

is de�ned as:

score(r) = maxffr(t; P ) j r is a supporter of Pg: (2)

This de�nition implies that, in order to calculate the score for a record r the

entire trie must be scanned to �nd all frequent patterns that are supported

by r. The pattern with the highest response frequency is picked out. Due

to the eÆcient structure of the trie, the scan goes very fast. So, using the

trie is an essential issue in the new algorithm.

To �nd a subset of N records which are likely to belong to t, perform the

following steps:

procedure selection (size N)

for every record r in the test set do

compute score(r);

sort all records r by decreasing score(r);

select the topmost N records;

When sorting the records by decreasing score(r), ties are resolved randomly.

The only parameter that remains to be set when we run PatSelect on a

data set is the minimum support parameter minsup. We have experimented

extensively with many machine learning data sets and always found best

results with a value of minsup of about 0.5% to 1% of the training set. With

higher values the patterns become too coarse and with lower values the re-

sults on a test set deteriorate because of over�tting. For reasonably large

data sets such a value of minsup also guarantees that the relative response

frequencies we calculate for all the frequent patterns are stable estimates of

the underlying response probabilities.

When comparing PatSelect to other Target Selection methods, it should

be mentioned that all methods can be written in the form of the above pro-

cedure selection. What di�ers in di�erent methods is the score function that

is utilized. For instance, when we use linear regression, the score function

is a linear function of the non-target attributes. When we use a segmen-

tation method such as CHAID, the score function for a speci�c record can

be de�ned as the relative response frequency in the segment that the record

belongs to. Of course, what is meant is the relative response frequency in

the training set. Now, we can see why PatSelect indeed is likely to perform

better than a tree method: PatSelect does not look at one segment that the
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record belongs to, it looks at all patterns that match the record, and it picks

the one with the highest response rate.

4 A fund raising application

In this section we apply the proposed target selection method to a large

database from a well-known Dutch charity organization. This database con-

tains information regarding the responses of more than 700 000 supporters

to 26 mailing campaigns over a period of six years. For each mailing cam-

paign, the supporters who were mailed in that campaign are recorded, as

well as the amount they have donated (zero or more) in Dutch guilders.

The mailing dates for each campaign are also known. Also recorded is the

date at which the supporter has donated money in response to a particu-

lar mailing. The total recorded data amounts to a database of about 400MB.

Feature Selection The �rst modeling step we undertook with these data is

to construct useful features from the raw data. In target selection, so-called

RFM-variables (regarding the Recency, Frequency and Monetary value of

the donations) capture relevant information for modeling the response be-

havior of customers. Constructing such RFM-variables is common practice

in direct marketing, see for instance [3]. We constructed seven features from

the supporter donation history data, of which two can be seen as recency

features (R1 and R2), two as frequency features (F1 and F2), and three as

features concerning monetary value (M1 to M3). Note that depending on

the actual mailing campaign that is used for obtaining the modeling data,

each of these features can be calculated for a di�erent moment in time.

We denote this moment as "now". In other words, the features must be

re-computed for every mailing campaign that is considered, i.e. whose re-

sponse is being modeled. The following list shows the seven features that

we have used:

R1: the number of weeks since the supporter's last response to a mailing

before now,

R2: the number of months since the supporter's �rst-ever donation,

F1: the fraction of the mailings the supporter has responded to,

F2: the median of the response times of the supporter in the period before

now over all mailings the supporter has responded to,
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M1: the average donated amount over all responded mailings before now,

M2: the amount the supporter donated at his/her last response before now,

M3: the average amount that the supporter has donated per year until now.

Data set construction We knew that the charity organization mails all

active supporters in their database at least once a year. We decided to base

our model on the two most recent full mailing campaigns: the �rst mailing

in 1998 and the �rst mailing in 1999, the most recent year in the database.

Before calculating the features for both years, we split the total raw data

set randomly into two equal parts: a training set and a test set. For both

of these we calculated the features for the 1998 and for the 1999 mailing.

Thus we ended up with four di�erent data sets: a training set and a test set

for the 1998 mailing of about 166 000 records, and a training and test set

for the 1999 mailing of size 186 000. The 1999 training set was not used in

the experiments described here. Each of these data sets contains data for

the supporters on eight variables: the seven RFM features explained in the

previous paragraph and calculated for the corresponding mailing, and the

response (yes or no) to that mailing. In all of these data sets the percentage

of responders is approximately 30%. The reason the �nal data set sizes are

all well under half of 700 000 is that we left out the following categories:

1) the automatically paying supporters, 2) supporters that never received

any mailing or never responded to any mailing, 3) supporters that had set

a limit to their donations beforehand and 4) those supporters that did not

take part in either the '98 or the '99 mailing.

Experiments and results Using the '98 training set we built a trie of

frequent patterns and we used this trie two times: once we scored the '98

test set with it, using the PatSelect algorithm, and once we scored the '99

test set in the same way. We used a value of 800 for the parameter min-

sup, which amounts to about 0.5% of the training set. Building the trie

costs around 10 seconds runtime, using an Apriori like method for building

the trie and scoring a complete test set around 5 seconds on our Pentium

III desktop computer running Windows NT. Patselect requires discrete at-

tribute values. So, we needed to discretize the seven RFM features. First,

we discretized the 1998 training set using the entropy-based method of [6].

The cut points provided by this process were also applied to the test sets.

The number of categories was restricted to 8, since we noticed that a larger

number gave poor results. For R1, F1, and F2, the maximum of 8 categories

was achieved. Further, we had 5 categories for R2, 6 for M1 and M3 and
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Figure 3: The gain chart for the '98 test set

4 for M2. The series of n categories for each feature was numbered from 0

to n � 1. The results are shown in Figure 3 and 4 in the form of so-called

gain charts, an often used technique in the marketing world. An entry (x; y)

in a gain chart means, that if a fraction x of the total database is mailed,

then a fraction y of the responders is reached. Thus, we want the curve of a

particular mailing to be as high as possible, since that means that we need

to spend little e�ort to gain a high response. In order to be able to compare

our method with commonly used methods, the same sequence of steps was

also performed using logistic regression and CHAID. When ordering scores,

ties were resolved randomly, as was the case in PatSelect. The results are

shown in the same �gures. Using CHAID with a maximum tree depth of 3

and a minimum leaf size of 200, we arrived at a tree with 89 leaves. If we

use PatSelect or logistic regression, we learn from these gain charts that by

mailing only 30% of the clients we will reach over 50% of the responders. It

appears that PatSelect performs at a level comparable to logistic regression

while CHAID lags behind clearly.

To illustrate the transparency of the PatSelect method, consider Table 1,

in which we collected some results of the PatSelect selection process for the
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'98 test set. In particular, we show some of the highest-scoring groups. We

read from this table e.g. that there were 1226 records in the '98 test set

that received a score of .8852 associated with the pattern ( R1 = 1, R2 =

4, F1 = 7). These records included 1084 responders, yielding a response

rate of 88.4%. In this way, we identify the old-time (R2 = 4, the highest

category), steadily donating (F1 = 7, also the highest category) supporters,

who did not donate very recently (R1 = 1, the second lowest category) as a

high-interest group for our next mailing. Thus, PatSelect not only assigns

a score to each case in the database, but it also generates the pattern that

resulted in this score. These patterns can be analyzed like we did in this

example.

5 Concluding remarks

In this paper, we developed a new technique for target selection. This tech-

nique was applied successfully to a large real-world data set made available

by a charity organization. It appears that the new technique is competitive

with the best available methods for this problem, while at the same time it

leads to transparent results by indicating high interest groups in the data.
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score R1 R2 F1 F2 M1 M2 M3 number hits rate

.8943 1 4 7 - 5 1 5 839 738 87.9

.8852 1 4 7 - - - - 1226 1084 88.4

.8372 1 3 7 5 4 0 5 882 749 84.9

.8321 1 3 7 - - - - 616 501 81.3

.8244 1 2 7 4 - - 5 529 424 80.2

.8176 1 - 7 5 5 1 5 945 729 77.1

.8129 1 - 7 5 - - - 1618 1207 74.6

Table 1: Some high-scoring patterns of the '98 test set.

In the near future, we hope to apply our new method to data sets taken

from other areas.
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