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Abstract

The Web Ontology Language (OWL) is the most expressive standard language

for modeling ontologies on the Semantic Web. In this paper, we present a tempo-

ral extension of the very expressive fragment SHIN (D) of the OWL-DL language

resulting in the tOWL language. Through a layered approach we introduce 3 ex-

tensions: i) Concrete Domains, that allows the representation of restrictions using

concrete domain binary predicates, ii) Temporal Representation, that introduces

timepoints, relations between timepoints, intervals, and Allen’s 13 interval relations

into the language, and iii) TimeSlices/Fluents, that implements a perdurantist view

on individuals and allows for the representation of complex temporal aspects, such

as process state transitions. We illustrate the expressiveness of the newly intro-

duced language by providing a TBox representation of Leveraged Buy Out (LBO)

processes in financial applications and an ABox representation of one specific LBO.

Keywords
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1 Introduction

The considerable and ever-increasing need to access the large volume of data present on

the World Wide Web today motivates a migration from free-text representations of data
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to semantically rich representations of information. Endeavors in this direction are being

undertaken under a common denominator: the Semantic Web [11]. The state-of-the-art

tools and languages provided under this umbrella, such as RDF(S) [12,22] and OWL [35],

go beyond the standard Web technology and provide the means for data sharing and

reusing outside this platform, i.e., in the form of semantic applications.

Focussed around the inference of implicit knowledge from explicitly represented infor-

mation, Semantic Web approaches are currently centered around static abstractions of

the world. However, conceptualizations lacking a temporal dimension are not only rather

artificial, but also impractical in environments that require context-awareness. Examples

of such environments can easily be found after a quick browse through highly dynamic

domains, such as the financial one. In such a case, one can envision the need for repre-

senting ephemeral knowledge, for example contained in news messages (stock price and

other financial variables), or more fundamental aspects of the financial domain (mergers

& acquisitions and financial processes).

Addressing temporality in abstract representations of the world requires dealing with

the aspect of time. One aspect is that of reference system - bringing an order into

sequences of events. In this respect, time can be instant-based or interval-based, with

instants denoting basic points in time with no duration, and intervals being represented

as pairs of distinct instants denoting some period of time.

A second aspect of time as pursued in this paper regards temporal concepts such as,

for example, the ephemeral character of relationships between individuals. In this context,

we seek to enable representations of change - descriptions of individuals that take variable

values for some property at different points in time - and state transitions, enabling the

representation of processes and corresponding transition axioms. In this sense, time is

somewhat implicit to the representation, i.e., the conceptualization evolves relative to the

temporal reference system and requires the latter.

The main goal pursued in this contribution regards an extension of a fragment of

OWL-DL with time. The fragment of OWL-DL considered is SHIN (D), which represents

OWL-DL without the use of nominals. In the remainder of this article, we shall denote

the fragment of OWL-DL based on the SHIN (D) description logic as OWL-DL−. We

focus on this particular subset due to the fact that this is the most expressive fragment of
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OWL-DL extended with concrete domains for which a terminating, sound and complete

reasoning algorithm is known [23].

In temporal terms, the extension of OWL-DL− that we envision addresses time both

in the sense of reference system as well as covering more complex temporal aspects, such

as change and state transitions. This materializes in a syntactic and semantic extension of

OWL-DL− in the form of a temporal web ontology language (tOWL) [27–30]. The tOWL

language is an extension of OWL-DL− that enables the representation and reasoning with

time and temporal aspects. It comes to meet shortcomings of previous approaches, such

as [17, 39] that only address this issue to a limited extent.

The approach presented in [17], for example, only deals with the representation of

time in the form of intervals and instants. However, ensuring that intervals are properly

defined (starting point is always strictly smaller than the ending point) is not possible in

this approach. Additionally, no support is offered for reasoning on the temporal constructs

introduced other than the standard OWL-DL reasoning. In the OWL-Time it is also not

possible to enforce a particular order of state transitions in a process.

The approach taken in [39] builds upon [17] by addressing one of its limitations,

namely: the representation of temporal aspects such as change. One of the limitations of

the approach in [39] relates to the definition of fluent properties as being symmetric - if

the pair (x,y) is the interpretation of a symmetric property, than the pair (y,x) is also an

instance of this property. This is more often than not false, as in the very simple example

of the employeeOf relation: although it holds that x is an employee of y, it certainly is

not the case that y is also en employee of x. Of course, restricting the definition of fluent

properties could support the definition hereof as symmetric, such as saying that there is

an employee relation between two concepts. However, for the current goal, we deem this

to be insufficient and do not define fluent properties as satisfying symmetry.

Building upon the approach in [39], tOWL enables differentiations between fluents that

take values from the TimeSlice class and fluents that indicate changing values (datatypes).

This is achieved through the use of the FluentObjectProperty and FluentDatatypeProperty

properties, and comes to reduce the proliferation of objects in tOWL ontologies due to

the fact that, in the case of datatypes, the number of timeslices that need to be created is

reduced to half. For the representation of time the tOWL language relies on an approach
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based on concrete domains, thus enabling higher temporal expressiveness when compared

to the approach in [17], that also stands at the basis of the fluents approach in [39].

The outline of the paper is as follows. In Section 2 we provide an overview of work

related to the current endeavor. Section 3 introduces different layers of the tOWL language

built on top of OWL-DL−. The RDF/XML serialization of the language is provided in

Section 4. An extensive example of how the expressiveness of tOWL can be employed for

the representation of Leverage Buy Outs in financial applications is provided in Section

5. Our conclusions and possible future works are given in Section 6.

2 Related Work

World representations may be synchronic or diachronic in the way the temporal perspec-

tive is considered within the representation [1]. Synchronic representations consider a

single point in time, with no regard for temporal evolution. Diachronic representations

take into consideration the existence of a history, and thus take into account change

through time. Regardless of the form of representation chosen, one must invariably deal

with the problem of identity. Synchronic identity regards identity holding at one single

time. Diachronic representations, our current focus, must deal with the problem of di-

achronic identity, or put differently, establishing how change affects the identity of entities

existing at different times.

In considering the issue of identity, two principles formulated by Leibniz provide a

different perspective hereon. The first one, regarding the identity of indiscernibles, states

that entities for which all properties are common and identical are, in turn, identical.

Additionally, indiscernibility of identicals states that entities being identical implies that

the entities have all properties in common, and the values hereof are identical.

Addressing the problem of diachronic identity involves adhering to one of two possible

views of the world, 3D vs. 4D. In a 3D view, an explicit distinction is made between

endurants and occurants, or put differently, between physical entities maintaining iden-

tity at all times, and events, i.e., things that happen, occur. Following Aristotle’s view,

endurants are characterized by some essential properties defining their identity, and acci-

dental ones that do not impact the latter. Such a representation comes to conflict with
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the second principle formulated by Leibniz, indiscernibility of identicals, as identity also

involves all properties to be shared by entities which are identical.

This problem is circumvented in the 4D view by assuming a four-dimensional space

in which entities are identified, and in which they exist in the temporal dimension in the

same way entities, for as far material, occupy space. This resumes to regarding entities

as having different temporal parts that describe the respective entity at different intervals

in time. These temporal parts may be assigned different properties, thus ensuring that

the indiscernibility of identicals principle holds.

Commonly, choices as the ones presented until now concern the field of logics. Due to

our current Semantic Web focus, special attention is given to Description Logics (DL) - a

fragment of first-order logic consisting of knowledge representation languages with known

and desirable computational properties (terminating, sound and complete reasoning al-

gorithm). The issue of temporality has also been addressed in this context, presenting

several choices regarding the handling of a temporal dimension.

The main distinction separating these approaches can be made in terms of whether

the temporal language offers explicit time, or the temporal dimension is only implicitly

present in the language by providing the means to talk about order of events and/or

states. Following [6], these different approaches are categorized in explicit and implicit,

respectively.

In the case of formalisms adhering to an explicit view on the temporal dimension, a

further differentiation may be made between internal and external methods of incorpo-

rating a temporal dimension in the presence of temporal operators. To some extent, the

internal view is in accordance with the indiscernibility of identicals principle of Leibniz,

in that individuals are regarded as a set of temporal parts of these individuals. The

external view on the other hand makes a clear distinction between static and temporal

entities. In this latter view, individuals may have different temporal snapshots at different

moments in time, describing that specific individual at the respective moment in time. In

this approach, the temporal dimension plays the role of relating the different snapshots.

Such a world view shares many of the shortcomings inherent to an endurantist view of

the world.

Next to explicit incorporations of the temporal dimension, [6] discusses approaches
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adhering to an implicit view on time. In such approaches, the focus is mainly on describing

worlds in a state-like manner. From this perspective, the temporal dimension is only

implicitly present in the language by enabling the description of orders of events/states.

In this approach, no a direct reference is made to the time associated with the event/states.

The main drawback of such approaches regards the inability of determining what holds

true at a certain point in time, i.e., constructing partial worlds from what holds true

across or during a given period.

Both the explicit and the implicit view of the world have different implementations in

the form of formalisms and/or systems. For the current purpose, we focus on the explicit

approach as we deem implicit temporal representations inappropriate for our current

purpose, for two main reasons: i) in representations with an implicit temporal dimension,

one cannot say exactly what holds true at one specific time, and ii) the representational

power of representations based on implicit temporal representations can be captured by

formalisms relying on an explicit time dimension. Of particular interest are the explicit

approaches relying on description logics, as this type of logics are the underlying formalism

of the OWL-DL− language, our current focus.

The interval-based T L-ALCF description logic [4, 5] enables the representation of

temporal interval networks, through Allen’s interval temporal logic, in the context of the

static ALCF description logic. The resulting logic is an aggregation of a temporal and

static logic, thus making this approach external as the temporal dimension is external

to the ALCF description logic. The T L-ALCF is decidable, and is currently the most

expressive DL extended in such a way that a terminating, sound and complete algorithm

is known. Returning to our current focus, OWL-DL− and the very expressive underlying

description logic SHIN (D), it can be concluded that an approach not moving beyond

the expressiveness of ALCF is insufficient for the current goal.

Approaches similar to T L-ALCF , but relying on a point-based temporal structure

rather than an interval-based one, provide means to represent temporal dependencies

between entities. An example of one such logic consists of the DLR description logic

extended with the temporal operators Until and Since, resulting in the DLRUS temporal

description logics [7]. Similarly, the ALCT temporal description logic is an extension of

ALC with the temporal connectives of tense logic, such as existential and universal future
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[6,37]. These approaches present drawbacks for our current purpose, in that extending the

point-based approach with an interval based one, as well as adding to the expressiveness

of the static DL that is extended, both severely impact the complexity of the logic, and

thus decidability.

Time can also be incorporated in the formalism by making it part of the latter, in

what constitutes an internal approach. One such approach consists of extending a DL

formalism with concrete domains. Initially proposed in [8], concrete domains allow ab-

stract concepts to be related to concrete values through functional roles. Description

logics extended with concrete domains maintain decidability, provided that the concrete

domain satisfies the property of admissibility or ω-admissibility [8, 25]. For a number of

constraint systems, special types of concrete domains based on binary domain predicates

that are jointly-exhaustive and pairwise disjoint, ω-admissibility has been proved in [25],

such as for example a constraint system based on a domain consisting of intervals, and

Allen’s 13 interval relations that may hold between pairs of intervals. This constraint

system approach to introducing time in DL-based formalisms is, for the current context,

the one that is less restricted by the expressiveness of the static DL which it extends.

Results are known for SHIQ(C+) description logic for which a terminating, sound and

complete reasoning algorithm is known [23].

Different aspects regarding the representation and management of time-varying data

have also been addressed within the broad area of temporal databases. A common way

of regarding time in such a context relates to the type of time that is addressed by the

system. This has resulted in 3 types of time [19] that may be considered, individually

or combined, in a temporal database: i) valid time, the time when a fact is true in the

real world, ii) transaction time, the time when the fact is known in the database, and

iii) user-defined time, which can represent any temporal attribute for which the temporal

semantics is only known to the user and has no particular meaning in the database. When

valid and transaction time are considered together, this results in bitemporal datamodels

[19]. Regarding the structure of the time domain, a further distinction may be made

between linear time - one timeflow from past, through present, to future - and branching

time, where the representation of possible, alternative futures is allowed [33]. Different

temporal extensions of standard database models are known [33], from which a vast
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majority is focussed on the relational database model, see for example [3, 10, 13, 14, 20],

but considerable research has been performed in extending object-oriented databases with

a temporal dimension, see for example [9, 36, 38, 40]. Although some of the concepts and

problems encountered in temporal databases have a certain overlap with the issues of

temporal extensions of Semantic Web ontology languages, some crucial differences apply

when ontology change is considered in the light of database schema evolution, as discussed

in [31].

In the context of the Semantic Web, a number of approaches have already been de-

signed, addressing different temporal aspects in relation to ontology languages. In this

final part of the overview regarding work related to our current aim, we discuss temporal

RDF [15], OWL-Time [17], OWL-MeT [21] and an OWL ontology for fluents [39].

A rather extensive approach towards extending ontology languages with a temporal

dimension is reported in [15]. This work is similar to our current goal as it concerns the

ability to represent temporal information in ontologies, but differs in that the language

considered is the Resource Description Framework (RDF). The result of this approach

consists of temporal RDF graphs with underlying temporal semantics allowing temporal

entailment on these graphs. The extension presented in [15] with regard to RDF consists of

a vocabulary extension focused on temporal labeling. This vocabulary extension enables

the labeling of triples, thus allowing for the representation of the time period during which

the triple was true. These labels are represented as intervals (ordered pairs of instants -

point-like moments in time). This allows the introduction of graph slices at a certain time

t, a subgraph consisting of all temporal triples with temporal label t, and graph snapshots

at a certain time t, all triples holding true at or during t. In other words, in temporal

RDF, triples are considered in association with their valid time.

The OWL-Time approach focusses on the Web Ontology Language rather than RDF.

The initial purpose behind the design of a time ontology was to represent the temporal

content of Web pages and the temporal properties of Web Services (DAML-Time) [17].

The time ontology is built around the TemporalEntity class and the relations describing

its individuals. Temporal entities may be of two types: Instant (point-like moments in

time) and Interval (time descriptions having a duration, represented as ordered pairs

of Instant individuals). Additionally, the ontology contains classes meant to describe
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other temporal concepts, such as duration (DurationDescription), dates and times (Date-

TimeDescription), temporal units (TemporalUnit), and alternative representations for the

days of the week (DayOfWeek).

The main relations describing individuals of type Instant are the functional properties

begins and ends. The range of these properties are objects of type Instant. The actual

time belonging to these individuals can be expressed as of the internal type Calendar-

ClockDescription or as dateTime of XML Schema. Intervals are also present in this time

ontology, including the different properties that may describe them. The property inside

may be defined in the case of individuals of type Interval, describing a relation between

an Instant and an Interval, equivalent to asserting that some individual of type Instant

is within the bounds of the individual of type Interval.

Despite being rather extensive in describing quantitative time and the qualitative rela-

tions that may exist among instants and intervals, the OWL-Time ontology is represented

in OWL-DL, and thus employs the underlying SHOIN (D) description logic, which has

a limited expressivity for the purpose pursued in this paper. This DL only provides lim-

ited support for datatypes, and is far from employing a fully fledged concrete domain or

constraint system as described in [25]. For this reason, the actual meaning of, for exam-

ple, an interval, is limited to the OWL-DL semantics. Representing proper intervals, i.e.,

intervals for which the starting point is strictly smaller than the ending point, as shown

in Equation 1, is not possible.

ProperInterval ≡ ∃(begin, end). < (1)

Axioms describing all possible relations between intervals are present in OWL-Time.

More complex constructs can be defined from the foundation offered by OWL-Time, from

which the most important category is represented by temporal aggregates. An example

of a temporal aggregate expressible in OWL-Time is: “Every other week on Monday,

Wednesday and Friday, until December 24th 1997, but starting on Tuesday, September

2nd, 1997” [34].

One final remark should be made regarding the expressiveness of the OWL-Time

approach, and that relates to support for time zones. This relies on an external time

zone ontology where the characteristics of time zones are explicitly modeled. Information
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regarding time zones in the US as well as across the whole world is present in this time

zone ontology and is able to handle all the usual time zones and daylight saving cases.

The problem of ontology evolution has been considered in an extension of OWL with

metric time, resulting in the OWL-MeT language [21]. The language extension concerns

the addition of the constructs of the ALCIO(MT ), such as somefuture and allfuture, for

example. The main focus of this research is however different from the goal we pursue

in this paper. OWL-MeT is solely concerned with ontology evolution, and thus the main

focus is on dealing with multiple ontology versions. This resumes to issues of compatibility

and querying over multiple versions of an ontology.

An approach related to incorporating perdurants through the use of timeslices and

fluents in OWL-DL is presented in [39], where the authors develop a reusable ontology

for fluents in OWL-DL. The fundamental building blocks of this representation are time

slices and fluents. Time slices represent the temporal parts of a specific entity at clear

moments in time and the concept itself is then defined as all of its timeslices. Fluents are

nothing more than properties that hold at a specific moment in time, may this time be

an instant (point-like representation of time) or an interval. This approach is an OWL

implementation of a perdurantist, i.e. four-dimensional, view of the world, that does

not stand in violation with the Leibniz Law. One of the drawbacks of this approach

consists of a proliferation of objects in the ontology, due to the creation of 2 timeslices

each time something is changing, that in turn must be associated to the static individual

they represent and linked to each other by a fluent. Additionally, no solution is provided

for the temporal equivalent of the cardinality construct, which cannot be modeled in the

case of overlapping timeslices, as also argued in [39].

3 The Temporal Web Ontology Language

Devising a temporal extension of OWL-DL− begins with a clarification of what is un-

derstood under the general, common denominator time. For the current purpose, we

consider a couple of fundamental aspects hereof, namely: i) temporal infrastructure, and

ii) change.

The first aspect, temporal infrastructure, regards the representation of time in the form
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of instants and/or intervals. From this perspective, we consider desirable an approach that

incorporates both a point-based as well as an interval-based time representation. Such

an approach should provide not only the temporal entities that constitute the temporal

infrastructure of the language, but also the relations that may hold between these entities,

e.g., the before relation that may hold between intervals.

The second aspect of time considered for the current purpose, change, requires further

clarification. This clarification is required, on one side, by the fact that there are two types

of changes in OWL ontologies: changes at the terminological level (TBox), and changes at

the assertional level (ABox). For the tOWL language, the focus is solely on changes that

concern individuals; in other words, tOWL enables the representation of change at ABox

level. Having isolated the focus of change, we also pinpoint its meaning to relate to the

change of any attribute value that describes an individual. For the current purpose, we

deem such changes to be one of three considered types: i) change in a concrete attribute

value of an individual, such as a change of hair color, ii) a change in the relationship

between entities, such as a product that belongs/is produced by a company, and iii) state

transitions in processes, such as the transition from the liquid state to a bankruptcy state

in the case of companies. In this context, we refer only to valid time, as known from

temporal databases, rather than transaction time, i.e., we seek to represent when certain

changes take place in the actual world rather than the time when they are represented in

the ontology.

The vast amount of research in temporal logic, temporal databases and even the

Semantic Web, as discussed in the previous section, comes to motivate reusing existing

results. A discussion on the choices made when considering the language design is provided

in Section 3.1. The individual tOWL layers are presented, one by one, in Sections 3.3

through 3.5. The conceptual presentation of the language is concluded with a discussion

on reasoning in the tOWL language, in Section 3.7.

3.1 Design Choices

Designing the tOWL language concerns a number of choices regarding the most suitable

approach(es) for the representation of the two temporal aspects considered for the current

scope: temporal infrastructure and change.
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At the level of temporal infrastructure, we seek to enable point-based as well as

interval-based representations. Additionally, we seek to extend the expressiveness of

OWL-DL− and the underlying SHIN (D) description logic without constraining the lat-

ter. From the approaches investigated in Section 2, the only approach suitable for these

goals is one based on concrete domains. The temporal infrastructure thus becomes inter-

nal to the language, and covers both the point-based time and the interval-based time.

For a point-based representation of time, we rely on a concrete domain based on the set Q

of rational numbers and the set of binary concrete domain predicates {<,≤, =, 6=,≥, >}.

Results are known for such an extension to the description logic SHIQ, where the con-

crete domain is also extended with an additional unary predicate =q for denoting equality

with q ∈ Q, resulting in the SHIQ(C+), for which concept satisfiability and subsumption

with regard to general TBoxes are both ExpTime-complete [23, 24]. Introducing such a

concrete domain in the language has the advantage of not only enabling the representation

of dates and times in terms of a translation between the xsd:dateTime XML datatype and

rational numbers, but enables the description of any numerical attribute through a direct

reference to the concrete domain.

Still considering the temporal infrastructure of the language, we seek to enable an

interval-based representation of time satisfying the previously mentioned constraints. For

this purpose, we seek to add intervals and Allen’s 13 interval relations [2] to the tOWL

language. As known from [2], all 13 Allen’s interval relations may be translated in terms

of equivalent relations on the intervals’ endpoints. For this reason, the concrete domain

based on the set Q of rational numbers and the set of binary concrete domain predicates

{<,≤, =, 6=,≥, >} is sufficient for such representations. Thus, intervals and Allen’s 13

interval relations are not introduced in the language by means of a concrete domain, but

rather as syntactic sugaring over the concrete domain Q with the respective relations. By

only introducing one concrete domain into the language, we build upon known decidability

results for description logics extended with concrete domains and ensure the language

decidability.

The representation of change in a temporal ontology language poses several problems

that need to be addressed. For the current goal we consider diachronic representations

that take history into account rather than synchronic ones, and are thus faced with the
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problem of diachronic identity, as discussed in Section 2. The second principle of Leibniz,

indiscernibility of identicals, poses an additional restriction on the choice of representation

and perspective on identity when change is involved. Finally, as the temporal language

we develop is aimed at the Semantic Web, one must invariably be able to say what holds

true at a certain moment in time. The Semantic Web, and OWL-DL− in this context,

further restrict the flexibility of designing an approach for the representation of change

due to the restriction of the underlying SHIN (D) description logic.

The straight-forward approach of associating a valid time to the binary predicate,

similar to solutions from temporal databases and temporal RDF, is not suited in the

current case, as ternary predicates are not directly supported in OWL-DL. The W3C

Semantic Web Best Practices working group provides 3 alternative ways of representing

n-ary relationships on the Semantic Web [32], namely: i) representing a relationship as

a class rather than as a property, ii) representing the individuals participating in the

relation in the form of a collection or ordered list, and iii) RDF reification. The first

two approaches share the drawbacks of proliferation of objects and the reduced meaning

of the actual representation of instances, especially in the case of OWL-DL. Regarding

the third, it should be noted that RDF reification is not appropriate when “the intent is

to talk about instances of a relation, not about statements about such instances.” [32].

Besides the fact that the RDF “reification of a triple does not entail the triple, and is not

entailed by it” [16], reification is not supported at all in OWL-DL−, the language that we

are extending, thus making such an approach unsuitable.

Another approach for associating valid time with a binary relation relates to the

addition of a meta-logical [26] predicate that takes as arguments the binary relationship

and the time when this relationship holds, respectively. However, as also discussed in [39],

such predicates are not supported in any of the OWL species.

The fluents approach presented in [39] and discussed in Section 2 is consistent with the

second principle of Leibniz and enables the maintenance of identity through change by

introducing a 4D view of the world in OWL ontologies. By moving the temporal argument

to the level of timeslices rather than the fluent itself, it circumvents the issue of n-ary

relationships, while still enabling the determination of what holds true at a particular

time. This approach also has the advantage of not restricting the expressiveness of the
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C o n c r e t e  D o m a i n s

T e m p o r a l  R e f e r e n c e
t O W L

4 d  F l u e n t s

Figure 1: The tOWL Layer Cake

description logic it extends, as it is more concerned with syntactic sugaring rather than

being a semantic extension. As introduced in [39], this 4D approach is achieved in the

form of an OWL ontology, which although insufficient for our current goal, extending the

OWL-DL− language, should prove a good starting point in addressing the representation

of change in the tOWL language.

For the design of the language we chose a layered approach. On top of the foundational

OWL-DL− layer, we add a concrete domains layer, a temporal reference layer and a 4d

fluents layer, as described in the following sections.

3.2 Layered Approach

The language extension concerns a number of different components, from which a couple

have already been identified in the form of the concrete domains extension and the fluents

extension. Additionally, we introduce an extension of the general expressiveness of the

language that is necessary both for concrete domains and fluents, but provides for more

expressiveness even outside a temporal context. This extension concerns mainly the rep-

resentation of functional role chains in the language. Thus, from an abstract perspective,

OWL-DL is extended with 3 main components.

The division of the extension into different, though interdependent components, mo-

tivates a layered approach for the design of the temporal language. The tOWL layercake

presented in Figure 1 provides an overview of the different layers introduced by tOWL on

top of the basic OWL-DL− layer - the language we extend.

The first extension introduced by tOWL concerns the expressiveness of the language

in a broader sense, rather than being restricted to a temporal domain. The Concrete

Domains (CD) Layer enables the representation of restrictions based on role compositions
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and binary concrete domain predicates.

Partly enabled by the CD Layer, the Temporal Reference (TR) Layer adds a temporal

reference system to the language, in the form of concrete time (instants and intervals) and

concrete temporal relations. The TR layer employs the CD layer for the representation

of temporal restrictions between time-bounded entities, such as statements regarding the

relative temporal incidence of events.

Upon enabling temporal reference in the language, the representation of change and

state transitions is provided through the 4d Fluents (4dF) Layer. This extension enables

the representation of temporal parts of individuals that may differ from one another in

different aspects (attribute values of properties) at various moments in time. The strong

relation between the CD and TR layers and the 4dF layer initiates in the latter being

enabled by the previous layers, and moving temporality beyond a simple reference system.

In the following three sections, we provide a more detailed presentation of each of the

three layers.

3.3 Concrete Domains Layer

The representation of complex restrictions, regardless of whether they describe some tem-

poral aspect, or rather relate to some static expression, can be achieved through the

composition of roles. In what follows, we denote by feature chain a composition of fea-

tures (functional roles). Following common denomination from Description Logics and

the Semantic Web, we make a distinction between abstract features, that point to some-

thing in the abstract domain, and concrete features, that take values from the concrete

domain.

Additionally, in tOWL we allow the feature chains to be composed with one concrete

feature g, giving birth to what is commonly denoted as a concrete feature path (CFP),

and which is mathematically equivalent to the following composition:

f1 ◦ f2 ◦ ... ◦ fn ◦ g,

where n ∈ N. Note that for n = 0, by convention, the set of abstract features is empty.

Letting ui denote a CFP, we allow existential and universal quantification of the fol-

lowing form in tOWL, where pd denotes a binary concrete domain predicate:
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∃(u1, u2).pd

∀(u1, u2).pd

For such constructs, ui may arbitrarily denote a CFP of length m, with m ∈ N∗ (note

that a path of length 1 consists solely of a concrete feature g).

We summarize the semantics introduced by this layer in Figure 2, with reference to

the tOWL abstract syntax constructs we introduce.

tOWL Abstract syntax Model-Theoretic Semantics

ConcreteFeatureChain(f1 f2 ... fn g) {a1 ∈ ∆I | ∃!a2 ∈ ∆I , ...,∃!an+1 ∈ ∆I∧

∧ ∃!b ∈ ∆D : (a1, a2) ∈ fI

1 , ...

(an, an+1) ∈ fI

n
∧ gI(an+1) = b}.

dataSomeValuesFrom (u1 u2 pd) {x ∈ ∆I | ∃!q1 ∈ ∆D, ∃!q2 ∈ ∆D :

uI

1 (x) = q1 ∧ uI

2 (x) = q2 ∧ (q1, q2) ∈ pI
d
}.

dataAllValuesFrom (u1 u2 pd) {x ∈ ∆I | ∀q1 ∈ ∆D, ∀q2 ∈ ∆D :

uI

1 (x) = q1 ∧ uI

2 (x) = q2 ∧ (q1, q2) ∈ pI
d
)}.

Figure 2: Semantics for the concrete domains layer.

3.4 Temporal Reference Layer

The concrete domain in the tOWL context, as presented in the previous section, enables

the representation of new restrictions in the language. Under the Temporal Reference

layer we include basic representations of time, both point-based and interval-based, as

well as a number of temporal relations between instants and intervals, as discussed in

Section 3.1. This forms the basis for our approach, as it allows the definition of complex

restrictions, such as the ones described in the previous section, but this time presenting a

temporal character. The concrete domain employed for the current purpose is a concrete

domain based on the set Q of rational numbers and the set of binary concrete domain

predicates {<,≤, =, 6=,≥, >},

This concrete domain also enables the representation of intervals and Allen’s 13 interval

relations through a translation scheme between interval relations and equivalent relations

in terms of the intervals’ endpoints. Rather than being a concrete domain, this extension
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Allen Relation Translation

∃(i1, i2).equal ∃(i1 ◦ start, i2 ◦ start). = ⊓ ∃(i1 ◦ end, i2 ◦ end). =

∃(i1, i2).before ∃(i1 ◦ end, i2 ◦ start). <

∃(i1, i2).after ∃(i2 ◦ end, i1 ◦ start). <

∃(i1, i2).meets ∃(i1 ◦ end, i2 ◦ start). =

∃(i1, i2).met-by ∃(i1 ◦ start, i2 ◦ end). =

∃(i1, i2).overlaps ∃(i1 ◦ start, i2 ◦ start). < ⊓ ∃(i2 ◦ start, i1 ◦ end). < ⊓ ∃(i1 ◦ end, i2 ◦ end). <

∃(i1, i2).overlapped-by ∃(i2 ◦ start, i1 ◦ start). < ⊓ ∃(i1 ◦ start, i2 ◦ end). < ⊓ ∃(i2 ◦ end, i1 ◦ end). <

∃(i1, i2).during ∃(i2 ◦ start, i1 ◦ start). < ⊓ ∃(i1 ◦ end, i2 ◦ end). <

∃(i1, i2).contains ∃(i1 ◦ start, i2 ◦ start). < ⊓ ∃(i2 ◦ end, i1 ◦ end). <

∃(i1, i2).starts ∃(i1 ◦ start, i2 ◦ start). = ⊓ ∃(i1 ◦ end, i2 ◦ end). <

∃(i1, i2).started-by ∃(i1 ◦ start, i2 ◦ start). = ⊓ ∃(i2 ◦ end, i1 ◦ end). <

∃(i1, i2).finishes ∃(i2 ◦ start, i1 ◦ start). < ⊓ ∃(i1 ◦ end, i2 ◦ end). =

∃(i1, i2).finished-by ∃(i1 ◦ start, i2 ◦ start). < ⊓ ∃(i1 ◦ end, i2 ◦ end). =

Figure 3: Translation scheme between Allen’s relations and a representation based on the

concrete domain.

is achieved by means of syntactic sugaring at language level, while at reasoner level we rely

on the concrete domain Q and the respective relations for dealing with representations

based on intervals. A complete translation scheme between Allen’s interval relations and

equivalent relations based on the intervals’ endpoints is presented in Figure 3.

A final issue regarding time in this context relates to its representation in tOWL

ontologies. The actual representation of time in tOWL ontologies is based on XML

Schema datatypes, namely dateTime as enabled by the concrete domain based on rational

numbers and relations that may exist between these numbers.

In the current case, relationships such as the starts relationship in the previous example

are enabled by the introduction of a constraint system based on intervals and Allen’s 13

interval relations.

Finally, it should be noted that the definition of intervals as introduced by tOWL

goes beyond the expressiveness of OWL-DL− by relying on the concrete domain predicate

< and the two concrete features start and end for stating that the starting point of an

interval should always be strictly smaller than its ending point:

ProperInterval ≡ ∃(begin, end). < (2)

3.5 4d Fluents Layer

The concrete domain approach that enables a temporal infrastructure in ontologies as

presented in the previous sections forms the basis for our approach. Building further
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upon these blocks, we seek to represent temporal aspects of entities other than timespan.

In this context, the final level of expressiveness that we enable in tOWL regards different

aspects of change, as identified in the introductory part of Section 3: i) change in a

concrete attribute value of an individual, such as a change of hair color, ii) a change

in the relationship between entities, such as a product that belongs/is produced by a

company, and iii) state transitions in processes.

A perdurantist approach forms the foundation of this type of features. Up to a certain

level, it can be argued that the fluents and timeslices employed for the representation

of temporal information do not go beyond the expressiveness of OWL-DL−. Rather,

fluents and timeslices represent a kind of vocabulary employed for the representation of

temporal parts of individuals that change some property in time. However, the semantics

of fluents as envisioned for tOWL enforces a number of restrictions on tOWL specific

concepts, and most importantly on fluents and timeslices. Some interesting features fuel

the interdependence between the concrete domain and the timeslices/fluents approach and

relate mostly to the restrictions this approach imposes on the very concepts it introduces.

One such restriction relates to the fact that fluents only relate timeslices that hold over

the same time interval. Representing such a restriction involves the concept of equality

of concrete values, and such a representation can thus only be enabled through the use

of a concrete domain. We illustrate this idea through an example that we graphically

depict in Figure 4. Here, we assume the existence of two OWL classes, namely Company

and Product, each with one static individual - iGoogle and iChrome, respectively. What

we seek to model is the fact that, over some period of time, the Chrome web-browser,

represented here by the iChrome individual, is a product of the Google company, repre-

sented here by the iGoogle individual. In order to represent such a fact, we first instan-

tiate a timeslice for each of the two concepts involved in this relation - iGoogle TS1 and

iChrome TS1, each linked through the towl:timeSliceOf property to the static individual

it represents, as depicted in Figure 4. Each timeslice is described by an interval through

the towl:time property. Finally, the iGoogle TS1 and iChrome TS1 timeslices are related

by the hasProduct fluent of the type towl:FluentObjectProperty. The restriction that flu-

ents only relate timeslices that hold over the same interval translates in this concrete

case the equals Allen relation holding between the two intervals that are associated to

18



the two timeslices that participate in the fluent relation. This is of course equivalent to a

representation in terms of interval endpoints, as illustrated by the translation presented

in Figure 3.

t o w l : t i m e S l i c e O f t o w l : t i m e S l i c e O f

t o w l : t i m e t o w l : t i m e

i G o o g l e _ T S 1

i I n te r va l1 i I n te r va l2

i C h r o m e _ T S 1
h a s P r o d u c t

i G o o g l e i C h r o m e

C o m p a n y

r d f : t y p er d f : t y p e

o w l : C l a s s

t o w l : T i m e S l i c e

r d f : t y p e r d f : t y p e

r d f s : s u b C l a s s O f

t o w l : e q u a l

P r o d u c t

r d f s : s u b C l a s s O f

t o w l : F l u e n t O b j e c t P r o p e r t y

Figure 4: Temporal restrictions on timeslices connected by fluents.

In Figure 5 we present an overview of the tOWL TBox axioms corresponding to the

timeslices/fluents layer.

tOWL 4dFluents Construct tOWL Axioms in OWL-DL

Class(TimeSlice) ∃time.Interval ⊓ ∃timeSliceOf.¬(TimeSlice ⊔ Interval ⊔ rdfs:Literal)

Class(Interval) ∃(start, end). < ⊓∃start.dateTime ⊓ ∃end.dateTime

Class(FluentProperty) FluentProperty ⊏ rdf:Property

Class(FluentObjectProperty) FluentObjectProperty ⊏ FluentProperty

Class(FluentDatatypeProperty) FluentDatatypeProperty ⊏ FluentProperty

Property(timeSliceOf) ≥ 1 timeSliceOf ⊑ TimeSlice

⊤ ⊑ ∀timeSliceOf.¬(TimeSlice ⊔ Interval ⊔ rdfs:Literal)

Property(time) ≥ 1 time ⊑ TimeSlice

⊤ ⊑ ∀time.Interval

Property(start) ≥ 1 start ⊑ Interval

⊤ ⊑ ∀start.dateTime

Property(end) ≥ 1 end ⊑ Interval

⊤ ⊑ ∀end.dateTime

Figure 5: tOWL axioms for the 4DFluents layer.

The fluents approach enables the determination of what holds true or false at a specific

moment in time, but also what is unknown. The Open World Assumption (OWA) common

on the Semantic Web, and for the OWL-DL language, is consistent with such an approach

due to the fact that it uses strong negation. As opposed to a Closed World Assumption

(CWA) which relies on the weak negation and thus associates a positive truth value even
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when it is not known what holds at a certain moment, the OWA does not associate any

truth value when facts are not known. An overview of weak vs. strong negation is given

in Figure 6.

World Weak negation Strong negation

true true true

unknown true unknown

false false false

Figure 6: Truth values in the case of weak vs. strong negation.

In the current case, this assumption translates to not associating any truth values

to time intervals for which nothing is known from the temporal perspective, i.e., time

intervals for which no timeslice describes what holds true over that interval. This case is

illustrated in Figure 7. Here we represent timeslices for two individuals iC and iD, and

choose a point in time, t1. While for the individual iC it can be determined what holds

true through the timeslice iC TimeSlice1, this is not the case for individual iD for which

no timeslice is present at the specified point t1. In such a case, the OWA is equivalent

to the world representation described in Figure 7, while in a CWA formalism everything

would be true across the unknown period.

t i m et 1

i C _ T i m e S l i c e 1 i C _ T i m e S l i c e 2

i D _ T i m e S l i c e 2i D _ T i m e S l i c e 1

i C

i D

Figure 7: Determining what holds true at a point in time.

3.6 The tOWL Language

The goal of this section is to provide a self-contained description of the tOWL language

which includes the OWL-DL− constructs allowed in tOWL for descriptions, axioms and

facts.

We begin by providing an overview of the tOWL description enabled by the lan-

guage in Figure 8. Here, C, D are used to denote class names, R is an object prop-

erty, U is a datatype property, n is a positive integer, u1, u2 are constructs of type
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tOWL Abstract Syntax DL Syntax Semantics

A (URI Reference) A AI ⊆ ∆I

towl:Thing ⊤ ∆I

towl:Nothing ⊥ {}

intersectionOf(C1 C2...) C1 ⊓ C2 CI
1 ∩ CI

2

unionOf(C1 C2...) C1 ⊔ C2 CI
1 ∪ CI

2

complementOf(C) ¬C ∆I \ CI

restriction(R someValuesFrom(C)) ∃R.C {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}

restriction(R allValuesFrom(C)) ∀R.C {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}

restriction(R minCardinality(n)) ≥ n R {x | ♯({y.〈x, y〉 ∈ RI}) ≥ n}

restriction(R maxCardinality(n)) ≤ n R {x | ♯({y.〈x, y〉 ∈ RI}) ≤ n}

restriction(U someValuesFrom(D)) ∃U.D {x | ∃y.〈x, y〉 ∈ UI and y ∈ DD}

restriction(U allValuesFrom(D)) ∀U.D {x | ∀y.〈x, y〉 ∈ UI and y ∈ DD}

restriction(U minCardinality(n)) ≥ n U {x | ♯({y.〈x, y〉 ∈ UI}) ≥ n}

restriction(U maxCardinality(n)) ≤ n U {x | ♯({y.〈x, y〉 ∈ UI}) ≤ n}

ConcreteFeatureChain(f1 ... fn g) f1 ◦ ... ◦ fn ◦ g {a1 ∈ ∆I | ∃!a2 ∈ ∆I , ...,∃!an+1 ∈ ∆I∧

∧ ∃!b ∈ ∆D : (a1, a2) ∈ fI
1 , ...

(an, an+1) ∈ fI
n ∧ g(an+1) = b}.

restriction((u1 , u2) someValuesFrom(pd)) ∃(u1, u2).pd {x ∈ ∆I | ∃!q1 ∈ ∆D ,∃!q2 ∈ ∆D : uI
1 (x) = q1 ∧

∧ uI
2 (x) = q2 ∧ (q1, q2) ∈ pI

d
}

restriction((u1 , u2) allValuesFrom(pd)) ∀(u1, u2).pd {x ∈ ∆I | ∀q1 ∈ ∆D,∀q2 ∈ ∆D : uI
1 (x) = q1 ∧

∧ uI
2 (x) = q2 ∧ (q1, q2) ∈ pI

d
)}

Figure 8: tOWL Descriptions

towl:ConcreteFeatureChain and pd denotes a binary concrete domain predicate. The

language description in Figure 8 is an adaptation of the summary of OWL-DL descriptions

found in [18].

An overview of the tOWL axioms and facts that are enabled by the language is given

in Figure 9. This is an adaptation of the summary of the OWL-DL axioms and facts

found in [18], that has been extended with the tOWL specific constructs introduced by

the language. Additionally, concepts related to the use of nominals have been excluded

from this summary due to our current focus on the OWL-DL− language.

3.7 Reasoning

The tOWL language extends OWL-DL− through the addition of constructs that support

the representation of time and temporal aspects. The SHIN (D) description logic, on

which OWL-DL− is based, proves insufficient for the expressiveness introduced by the

tOWL layers.
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tOWL Abstract Syntax DL Syntax Semantics

Class(A partial C1...Cn) A ⊑ C1 ⊓ ... ⊓ Cn AI ⊆ CI
1 ∩ ... ∩ CI

n

Class(A complete C1...Cn) A = C1 ⊓ ... ⊓ Cn AI = CI
1 ∩ ... ∩ CI

n

SubClassOf (C1 C2) C1 ⊑ C2 CI
1 ⊆ CI

2

EquivalentClasses (C1...Cn) C1 = ... = Cn CI
1 = ... = CI

n

DisjointClasses (C1...Cn) Ci ⊓ Cj = ⊥, i 6= j CI
i ∩ CI

j = {}, i 6= j

Datatype(D) DI ⊆ ∆I
D

DatatypeProperty(U super(U1)...super(Un) U ⊑ Ui UI ⊆ UI
i

domain(C1)...domain(Cm) ≥ 1U ⊑ Ci UI ⊆ CI
i × ∆I

D

range(D1)...range(Dl) ⊤ ⊑ ∀U.Di UI ⊆ ∆I × DI
i

[Functional]) ⊤ ⊑ ≤ 1U UI is functional

SubPropertyOf(U1 U2) U1 ⊑ U2 UI
1 ⊆ UI

2

EquivalentProperties(U1 ...Un) U1 = ... = Un UI
1 = ... = UnI

ObjectProperty(R super(R1)...super(Rn) R ⊑ Ri RI ⊆ RI
i

domain(C1)...domain(Cm) ≥ 1R ⊑ Ci RI ⊆ CI
i × ∆I

range(C1)...range(Cl) ⊤ ⊑ ∀R.Ci RI ⊆ ∆I × CI
i

[inverseOf(R0)] R = (−R0) RI = (RI
0 )−

[Symmetric] R = (−R) RI = (RI)−

[Functional] ⊤ ⊑ ≤ 1R RI is functional

[InverseFunctional] ⊤ ⊑ ≤ 1R− (RI)− is functional

[Transitive]) Tr(R) RI = (RI)+

SubPropertyOf(R1 R2) R1 ⊑ R2 RI
1 ⊆ RI

2

EquivalentProperties(R1 ...Rn) R1 = ... = Rn RI
1 = ... = RnI

AnnotationProperty(S)

FluentDatatypeProperty(UF D super(UF D
1 )...super(UF D

n ) UF D ⊑ UF D
i (UF D)I ⊆ (UF D

i )I

domain(CTS
1 )...domain(CTS

m ) ≥ 1UF D ⊑ CTS
i (UF D)I ⊆ (CTS

i )I × ∆I
D

range(D1)... range (Dl) ⊤ ⊑ ∀UF D.Di (UF D)I ⊆ ∆I × DI
i

FluentObjectProperty(RF O super(RF O
1 )...super(RF O

n ) RF O ⊑ RF O
i (RF O)I ⊆ (RF O

i )I

domain(CTS
1 )...domain(CTS

m ) ≥ 1RF O ⊑ CTS
i (RF O)I ⊆ (CTS

i )I × ∆I
D

range(CTS
1 )...range(CTS

l
) ⊤ ⊑ ∀RF O .CTS

i (RF O)I ⊆ ∆I × (CTS
i )I

Individual(o type (C1)... type (Cn) o ∈ Ci oI ∈ CI

value(R1 o1)... value (Rn on) 〈o, oi〉 ∈ Ri 〈oI , oIi 〉 ∈ RI
i

value(U1 v1)... value (Un vn)) 〈o, vi〉 ∈ Ui 〈oI , vIi 〉 ∈ UI
i

SameIndividual(o1 ...on) o1 = ... = on oI1 = ... = oIn

DifferentIndividuals(o1 ...on) oi 6= oj , i 6= j oIi 6= oIj , i 6= j

TimeSlice(oTS type (CTS
1 )... type (CTS

n ) oTS ∈ CTS
i (oTS)I ∈ (CTS )I

value(timeSliceOf o) 〈oTS , o〉 ∈ timeSliceOf 〈(oTS )I , oI〉 ∈ timeSliceOfI

value(RF O
1 oTS

1 )... value (RF O
n oTS

n ) 〈oTS , oTS
i 〉 ∈ RF O

i 〈(oTS )I , (oTS
i )I〉 ∈ (RF O

i )I

value(UF D
1 v1)... value (UF D

n vn)) 〈oTS , vi〉 ∈ UF D
i 〈(oTS )I , vIi 〉 ∈ (UF D

i )I

Figure 9: tOWL Axioms and Facts
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Currently, a reasoner has been implemented for the Lite version of the tOWL language.

The tOWL-Lite language is based on the ALC(C) description logic, and is thus limited in

expressiveness. However, this logic is sufficient for representing even complex cases, such

as the Leveraged Buy Out example in Section 5. The reasoner is based on the algorithm

described in [25], extended with a number of optimizations techniques meant to enhance

the efficiency of the algorithm. The implemented optimizations are:

• Normalization and Simplification Normalization,

• TBox Absorption,

• RBox Absorption,

• Lazy Unfolding,

• Dependency-directed Backjumping, and

• Top-Bottom Search for Classification.

Rather than extending existing reasoners, the tOWL-Lite reasoner consists of a C++

implementation containing the tableau algorithm for the unrestricted version of the ALC(C)

description logic as described in [25]. The execution of algorithms based on tableaux as

an inference procedure for expressive logics requires a massive use of dynamic structures

thus motivating the implementation of a new reasoner from scratch using C++.

4 RDF/XML Serialization

The main focus of this section is to present the serialization of the tOWL abstract syntax.

We introduce the new constructs in RDF/XML by means of examples. Each of the

following subsections is focussed on one tOWL construct.

4.1 towl:ConcreteFeatureChain

Concrete chains are represented through the towl:ConcreteFeatureChain construct. In

order to enforce an ordering on the represented chain, this construct is defined as a subclass
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of rdf:List, and thus inherits its characteristics. In this fashion, it is possible to represent

a functional role chain in RDF/XML as:

<towl:ConcreteFeatureChain

rdf:ID="iEarlyStageChain">

<rdf:first rdf:resource="#earlyStage" />

<rdf:rest>

<towl:ConcreteFeatureChain>

<rdf:first rdf:resource="#time" />

<rdf:rest rdf:resource="&rdf;nil" />

</towl:ConcreteFeatureChain>

</rdf:rest>

</towl:ConcreteFeatureChain>

Here, the RDF/XML code shown above translates to the following DL representation:

earlyStage ◦ time

which represents the composition of two features, earlyStage and time, for individuals

for which the earlyStage feature is defined.

4.2 Restrictions Based on Chains

We enable complex restrictions based on thetowl:ConcreteFeatureChain construct or on

the towl:Concrete2RoleChain construct in the tOWL language by extending owl:Restriction

and by adding the towl:onPropertyChains construct. In order to enforce an ordering

on the chains contained by the restriction, we represent these type of expressions as lists.

Additionally, we employ the towl:dataSomeValuesFrom construct for representing an

existential quantification:
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<owl:Class rdf:ID="LBOProcess TS">

<rdfs:subClassOf>

<towl:Restriction>

<towl:onPropertyChains>

<rdf:List>

<rdf:first

rdf:resource="#iEarlyStageChain" />

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource="#time" />

<rdf:rest rdf:resource="&rdf;nil" />

</rdf:List>

</rdf:rest>

</rdf:List>

</towl:onPropertyChains>

<towl:dataSomeValuesFrom

rdf:resource="#starts"/>

</towl:Restriction>

</rdfs:subClassOf>

</owl:Class>

This translates to the following DL representation:

∃(earlyStage ◦ time, time).starts

4.3 towl:TimeSlice

Timeslices are available in tOWL through the towl:TimeSlice construct that represents

the class of all timeslices. Individuals of this class are represented in the same way regular

OWL class members are represented. Following this specification, a minimal introduction

of a towl:TimeSlice individual is of the form:
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<towl:TimeSlice rdf:ID="iEarlyStage1 TS1"/>

4.4 towl:Interval

In the same fashion timeslices are defined, one can also represent individuals of the

towl:Interval class, as follows:

<towl:Interval rdf:ID="t1"/>

4.5 towl:FluentProperty

Two types of fluents are available in tOWL ontologies, namely fluents for which the

range is a timeslice (towl:FluentObjectProperty) and fluents pointing to datatypes (Flu-

entDatatypeProperty). Both are defined as subproperties of towl:FluentProperty, which

in turn is a subclass of rdf:Property

4.5.1 towl:FluentObjectProperty

Fluents that link solely timeslices are represented as instances of the towl:FluentObjectProperty.

This is achieved as follows:

<towl:FluentObjectProperty rdf:ID="inStage"/>

4.5.2 towl:FluentDatatypeProperty

Fluents that point to datatypes are represented as subproperties of the towl:FluentDatatypeProperty,

in the same way this is achieved for towl:FluentObjectProperty relations:

<towl:FluentDatatypeProperty

rdf:ID="stageImpact">
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4.6 towl:timeSliceOf

The towl:timeSliceOf construct is used to link timeslices to the static individuals they

represent across some temporal interval. Declarations involving this type of construct can

be achieved by following the OWL-DL specification, as follows:

<towl:timeSliceOf rdf:ID="iAllianceBoots"/>

4.7 towl:time

The towl:time property is used to associate timeslices to the temporal interval across

which they hold true. Declarations involving this type of construct can be achieved as

follows:

<towl:time rdf:ID="t1"/>

4.8 towl:start

The towl:start property is used to indicate the starting point of individuals of type

towl:Interval. This is achieved by making a direct reference to objects of type XML

Schema dateTime. Declarations involving this type of construct can be achieved by fol-

lowing the OWL-DL specification, as follows:

<towl:start rdf:datatype="&xsd;dateTime">

2007-12-25T12:30:00</start>

4.9 towl:end

The towl:end property is used to indicate the ending point of individuals of type towl:Interval.

This is again achieved by making a direct reference to objects of type XML Schema date-

Time. Declarations involving this type of construct can be achieved as follows:
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<end rdf:datatype="&xsd;dateTime">

2007-12-26T12:30:00</end>

5 A Practical Application

The main focus of this section is to illustrate the use of the tOWL language in a temporal

context. For this purpose, we focus on a complex process - Leveraged Buy Outs (LBO) in

financial applications. In Section 5.1 we present LBO processes in general, and introduce

the particular LBO, the Alliance Boots LBO, that is employed for the purpose of this

section. In Section 5.2 we illustrate how such a process can be represented in the tOWL

language.

5.1 Leveraged Buy Outs in General

A Leveraged Buy Out is a special type of an acquisition of a company by another company

by relying mostly on loans for the price of the acquisition. Additionally, often enough the

assets of the company that is to be acquired are used, partly of wholly, as collateral for

the loans.

This type of process is of particular interest in the current case for 2 reasons: i) its

high complexity is adequate for illustrating the main features of the tOWL language, and

ii) the ability to deal with such a process in an automated fashion is also of interest in

the economic domain, due to the high impact that the different stages have on the share

prices of the involved companies.

An LBO process consists of a number of main stages, namely:

1. Early stage

2. Due diligence

3. Bidding

4. Acquisition
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Figure 10: Stages of an LBO process.

The transition between stages is however not straightforward, as after nearly each stage

the process can be aborted. Additionally, some of the stages may be extended before the

transition into a different stage. In the bidding stage, this extension materializes in a

raise of the current bid. We illustrate an LBO process in the light of its stage transitions

by means of an activity diagram in Figure 10. The initial state of an LBO process is

the Early Stage. From this stage, a transition can be made into the next state - Due

Diligence, or this state may be extended, or the whole process can be aborted. Whether

an extension or not is granted, the process may evolve to the Due Diligence stage. In case

the process is not aborted in this stage, the LBO can continue with the Bidding phase.

Again, besides the process being aborted, the LBO can continue with a Raise Bid phase

in which the companies involved increase the amount they are prepared to lay down for

the target. When the final bid is made and accepted, even in the case when no counter

bids are made, the process slides into the Acquisition phase and ends.

The example introduced in this document describes the biggest LBO acquisition in

Europe. In the March and April of 2007, two hedge funds competed for the acquisition

of one target company. From the two hedge funds (KKR and Terra Firma), the first won

the bidding and acquired target company Alliance Boots.

5.2 The Alliance Boots LBO in tOWL

The focus of this section is to illustrate how the information regarding an LBO process,

both at an abstract level as well as in the particular example presented here, can be

represented in Description Logics and tOWL abstract syntax, respectively. The main

focus is on illustrating the main concepts that are relevant from a language perspective
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rather than providing a representation of the full example, thus avoiding repetition.

5.2.1 The LBO Example in DL Notation

In this Section we represent the LBO example in Description Logics. We illustrate the

main concepts, both at TBox and Abox level, by means of examples.

TBox At TBox level we represent conceptual information that is known about LBO

processes in general. In this context, two types of companies that take part in an LBO

are known: HedgeFund and Target, which we define as subclasses of the Company class,

as follows:

HedgeFund ⊑ Company

Target ⊑ Company

This translates to the following representation in tOWL abstract syntax:

Class(Company)

Class(HedgeFund partial Company)

Class(Target partial Company)

The different stages of an LBO process are represented as subclasses of the Stage

class, such as for example in the case of the Bidding stage:

Bidding ⊑ Stage

This translates to the following representation in tOWL abstract syntax:

Class(Bidding partial Stage)

All stages are pairwise disjoint, which we represent as follows, for each unique pair of

ordered stages:
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EarlyStage ⊑ ¬DueDiligence

This translates to the following representation in tOWL abstract syntax:

DisjointClasses(EarlyStage, DueDiligence,

Bidding, RaiseBid, Acquisition,

Abort, Extension)

We define the class of all timeslices of an LBO Process as follows:

LBOProcess TS ≡ TimeSlice⊓ ∃timeSliceOf.LBOProcess

This translates to the following representation in tOWL abstract syntax:

Class(LBOProcess TS complete

restriction(timeSliceOf(someValuesFrom

LBOProcess)))

In similar fashion, we define, for each stage, the class of all timeslices of that stage.

For the EarlyStage this is achieved as follows:

EarlyStage TS ≡ TimeSlice⊓ ∃timeSliceOf.EarlyStage

This translates to the following representation in tOWL abstract syntax:

Class(EarlyStage TS complete

restriction(timeSliceOf(someValuesFrom

EarlyStage)))
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For each stage, we define a functional property that links a particular LBO process

timeslice to the timeslice of the stage belonging to it:

functional(earlyStage)

earlyStage : LBOProcess TS× EarlyStage TS

This translates to the following representation in tOWL abstract syntax:

ObjectProperty(earlyStage

domain(LBOProcess TS)

range(EarlyStage TS))

Func(earlyStage)

Next, we move on to define the inStage fluent, that for each timeslice of a company

points to the stage in which the company finds itself.

inStage : (∃timeSliceOf.Company) ×

(∃timeSliceOf.Stage)

This translates to the following representation in tOWL abstract syntax:

FluentObjectProperty(inStage

domain(

restriction(timeSliceOf(someValuesFrom

Company)))

range(

restriction(timeSliceOf(someValuesFrom

Stage)))
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Timeslices of an LBO process are defined by the sequence of stages that a company

may follow in this process. Representing such sequences relies on functional role chains,

and reduces to assessing the order of the intervals associated with the different stages.

For example, representing that the EarlyStage always starts an LBO process can be

represented as follows:

LBOProcess TS ⊏ ∃(earlyStage ◦ time, time).starts

This translates to the following representation in tOWL abstract syntax:

Class(LBOProcess TS partial

restriction(

dataSomeValuesFrom(

ConcreteFeatureChain(earlyStage time),

time, starts))))

ABox At ABox level we represent particular information that is known about the spe-

cific LBO process presented in this section. We start off by instantiating the relevant

individuals that are known to play a role in the LBO process.

First, we represent the participating companies:

iAllianceBoots:Target

iKKR:HedgeFund

iTerraFirma:HedgeFund

This translates to the following representation in tOWL abstract syntax:

Individual(iAllianceBoots type(Target))

Individual(iKKR type(HedgeFund))

Individual(iTerraFirma type(HedgeFund))

33



For each of the hedgefunds involved, we instantiate a process and define its stages,

such as in the case of the TerraFirma:

iLBOProcess1:LBOProcess

(iLBOProcess1 TS1,iLBOProcess1):timeSliceOf

(iLBOProcess1 TS1,iEarlyStage1 TS1):earlyStage

(iLBOProcess1 TS1,iDueDiligence1 TS1):dueDiligence

(iLBOProcess1 TS1,iBidding1 TS1):bidding

(iLBOProcess1 TS1,iAbort1 TS1):abort

This translates to the following representation in tOWL abstract syntax:

Individual(iLBOProcess1 TS1 type(LBOProcess TS)

value(timeSliceOf iLBOProcess 1))

LBOProcess TS(iLBOProcess1 TS1

value(earlyStage iEarlyStage1 TS1)

value(dueDiligence iDueDiligence1 TS1)

value(bidding iBidding1 TS1)

value(abort iAbort1 TS1))

Next, we represent the information contained by the individual news messages asso-

ciated with the LBO process. We illustrate this by employing the first news message

that describes the hedgefund TerraFirma entering the EarlyStage phase. Here, we only

present a summary of the actual news message and indicate the stage that is signaled

by it. The date and time associated to the news message is the one as specified on

http://www.marketwatch.com/, and represents the time when the news message was

issued and thus became available to the wide public.

Buyout firm Terra Firma mulls Boots bid

Sun Mar 25, 2007 8:42am EDT
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This news message signals the beginning of the LBO, mentioning that Terra Firma is

considering a bid for Alliance Boots (EarlyStage)

For representing the information contained in the news message we create a timeslice for

the hedgefund and the target, respectively, a time interval associated to the stage, and

employ the inStage fluent to associate the companies to the stage:

t1:Interval

iEarlyStage1:EarlyStage

iEarlyStage TS1:EarlyStage TS

(iEarlyStage TS1,iEarlyStage1):timeSliceOf

(iEarlyStage TS1,t1):time

iAllianceBoots TS1:TimeSlice

(iAllianceBoots TS1,iAllianceBoots):timeSliceOf

iAllianceBoots TS1,t1:time

(iAllianceBoots TS1,iEarlyStage TS1):inStage

iTerraFirma TS1:TimeSlice

(iTerraFirma TS1,iTerraFirma):timeSliceOf

(iTerraFirma TS1,t1):time

(iTerraFirma TS1,iEarlyStage TS1):inStage

This translates to the following representation in tOWL abstract syntax:

Individual(t1 type(Interval))

Individual(iEarlyStage1 type(EarlyStage TS))

Individual(iEarlyStage1 TS1 type(TimeSlice)

value(timeSliceOf iEarlyStage1)
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value(time t1))

Individual(iAllianceBoots TS1 type(TimeSlice)

value(timeSliceOf iAllianceBoots)

value(time t1)

value(inStage iEarlyStage1 TS1))

Individual(iTerraFirma TS1 type(TimeSlice)

value(timeSliceOf iTerraFirma)

value(time t1)

value(inStage iEarlyStage1 TS1))

6 Conclusion & Further Research

The tOWL language is an extension of OWL-DL− that enables the representation and

reasoning with time and temporal aspects. It comes to meet shortcomings of previous

approaches, such as [17, 39] that only address this issue to a limited extent.

Summarizing, tOWL is a new temporal web ontology language that enables the repre-

sentation of dynamic worlds. It extends the OWL-DL− language with concrete domains,

and enables class axioms that rely on binary concrete domain predicates that can also

be employed in combination with property chains. The language provides a concrete

domain based on the set Q of rational numbers and the set of binary concrete domain

predicates {<,≤, =, 6=,≥, >}. By means of syntactic sugaring we also introduce intervals

and Allen’s 13 interval relations that may hold between intervals in the language. Addi-

tionally, a fluents approach is employed for the representation of the different aspects of

change considered relevant for the tOWL language. Building on the approach presented

in [39], it extends the latter by making a difference between fluents that point to datatypes

and fluents that point to objects, thus limiting the proliferation of objects inherent to this

approach, since less timeslices are created in the case of datatype fluents. The tOWL

language can be employed for representation and reasoning in a wide variety of dynamic

domains, such as the financial one as exemplified in this paper.
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