24 research outputs found

    Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells

    Get PDF
    A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial amino acid sequences were generated from peptides obtained by in situ digestion of the electroblotted protein. These sequences identified the marker protein as gelsolin, a finding that was confirmed by two-dimensional immunoblotting of human MRC-5 fibroblast proteins using specific antibodies and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture

    The covalent structure of Acanthamoeba actobindin

    Get PDF
    Actobindin is a protein from Acanthamoeba castellanii with bivalent affinity for monomeric actin. Because it can bind two molecules of actin, actobindin is a substantially more potent inhibitor of the early phase of actin polymerization than of F-actin elongation. The complete amino acid sequence of 88 residues has been deduced from the determined sequences of overlapping peptides obtained by cleavage with trypsin, Staphylococcus V8 protease, endoproteinase Asp-N, and CNBr. Actobindin contains 2 trimethyllysine residues and an acetylated NH2 terminus. About 76% of the actobindin molecule consists of two nearly identical repeated segments of approximately 33 residues each. This could explain actobindin's bivalent affinity for actin. The circular dichroism spectrum of actobindin is consistent with 15% alpha-helix and 22% beta-sheet structure. A hexapeptide with sequence LKHAET, which occurs at the beginning of each of the repeated segments of actobindin, is very similar to sequences found in tropomyosin, muscle myosin heavy chain, paramyosin, and Dictyostelium alpha-actinin. A longer stretch in each repeated segment is similar to sequences in mammalian and amoeba profilins. Interestingly, the sequences around the trimethyllysine residues in each of the repeats are similar to the sequences flanking the trimethyllysine residue of rabbit reticulocyte elongation factor 1 alpha, but not to the sequences around the trimethyllysine residues in Acanthamoeba actin and Acanthamoeba profilins I and II

    A Caspase-activated Factor (CAF) Induces Mitochondrial Membrane Depolarization and Cytochrome c Release by a Nonproteolytic Mechanism

    Get PDF
    It is well established that apoptosis is accompanied by activation of procaspases and by mitochondrial changes, such as decrease in mitochondrial transmembrane potential (ΔΨm) and release of cytochrome c. We analyzed the causal relationship between activated caspases and these mitochondrial phenomena. Purified recombinant caspase-1, -11, -3, -6, -7, and -8 were incubated with mitochondria in the presence or absence of additional cellular components, after which ΔΨm was determined. At lower caspase concentrations, only caspase-8 was able to activate a cytosolic factor, termed caspase-activated factor (CAF), which resulted in decrease in ΔΨm and release of cytochrome c. Both CAF-mediated activities could not be blocked by protease inhibitors, including oligopeptide caspase inhibitors. CAF-induced cytochrome c release, but not decrease of ΔΨm, was blocked in mitochondria from cells overexpressing Bcl-2. CAF is apparently involved in decrease of ΔΨm and release of cytochrome c, whereas Bcl-2 only prevents the latter. Hence, CAF may form the link between death domain receptor–dependent activation of procaspase-8 and the mitochondrial events studied

    Structural relationships of actin-binding proteins

    No full text
    The sequences of a large number of actin-binding proteins have been compared. These findings, together with the results of protein-chemical analysis, peptide synthesis and site-directed and deletion mutagenesis, have led to the assignment of actin-binding sites. Within these segments, small actin-binding motifs have been delineated. Most actin-binding proteins interact with actin subdomain-1 but our analyses reveal neither primary nor secondary structure homology among these proteins, suggesting that actin binding does not follow simple structural principles

    Tumour necrosis factor induces phosphorylation primarily of the nitric-oxide-responsive form of glyoxalase I

    No full text
    We have previously shown that TNF (tumour necrosis factor) induces phosphorylation of GLO1 (glyoxalase I), which is required for cell death in L929 cells. In the present paper, we show that the TNF-induced phosphorylation of GLO1 occurs primarily on the NO (nitric oxide)-responsive form of GLO1. In addition, analysis of several cysteine mutants of GLO1 indicated that Cys-138, in combination with either Cys-18 or Cys-19, is a crucial target residue for the NO-mediated modification of GLO1. Furthermore, the NO-donor GSNO (S-nitrosogluthathione) induces NO-mediated modification of GLO1 and enhances the TNF-induced phosphorylation of this NO-responsive form. GSNO also strongly promotes TNF-induced cell death. By the use of pharmacological inhibition of iNOS (inducible NO synthase) and overexpression of mutants of GLO1 that are deficient for the NO-mediated modification, we have shown that the NO-mediated modification of GLO1 is not a requirement for TNF-induced phosphorylation or TNF-induced cell death respectively. In summary, these data suggest that the TNF-induced phosphorylation of GLO1 is the dominant factor for cell death
    corecore