318 research outputs found

    Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual-Energy Mammography

    Get PDF
    Over the past decade, contrast-enhanced (CE) dual-energy (DE) x-ray breast imaging has emerged as an exciting, new modality to provide high quality anatomic and functional information of the breast. The combination of these data in a single imaging procedure represents a powerful tool for the detection and diagnosis of breast cancer. The most widely used implementation of CEDE imaging is k-edge imaging, whereby two x-ray spectra are placed on either side of the k-edge of the contrast material. Currently, CEDE imaging is performed with iodinated contrast agents. The lower energies used in clinical DE breast imaging systems compared to imaging systems for other organs suggest that an alternative material may be better suited. We developed an analytical model to compare the contrast of various elements in the periodic table. The model predicts that materials with atomic numbers from 42 to 52 should provide the best contrast in DE breast imaging while still providing high-quality anatomical images. Upon consideration, silver was chosen for more detailed study. Through simulation and experimental validation, we determined that not only does silver perform better than iodine when imaged at their respective optimal conditions, but silver is able to provide higher levels of contrast than iodine when imaged with current protocols that are optimal for iodine. Therefore, a silver agent could be translated to the clinic without modification of existing imaging systems or techniques. A prototype silver agent was designed. The agent consists of (i) a silver core for DE contrast, (ii) a silica shell to prevent the release of toxic silver cations, and (iii) a polyethylene glycol layer to improve the biocompatibility of the entire nanostructure. DE imaging with the particles showed a 9-fold increase in contrast when injected into mice, while displaying no acutely toxic effects. The prototype silica-silver nanoparticles represent a first step in developing a biologically stable contrast agent that is specifically suited for DE breast imaging

    An Adaptive Mesh MPI Framework for Iterative C++ Programs

    Get PDF
    Computational Science and Engineering (CSE) applications often exhibit the pattern of adaptive mesh applications. Adaptive mesh algorithm starts with a coarse base-level grid structure covering entire computational domain. As the computation intensified, individual grid points are tagged for refinement. Such tagged grid points are dynamically overlayed with finer grid points. Similarly if the level of refinement in a cell is greater than required, all such regions are replaced with coarser grids. These refinements proceed recursively. We have developed an object-oriented framework enabling time-stepped adaptive mesh application developers to convert their sequential applications to MPI applications in few easy steps. We present in this thesis our positive experience converting such application using our framework. In addition to the MPI support, framework does the grid expansion/contraction and load balancing making the application developer’s life easier

    Altering HIF-1α through 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure affects coronary vessel development.

    Get PDF
    Differential tissue hypoxia drives normal cardiogenic events including coronary vessel development. This requirement renders cardiogenic processes potentially susceptible to teratogens that activate a transcriptional pathway that intersects with the hypoxia-inducible factor (HIF-1) pathway. The potent toxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to cause cardiovascular defects by way of reduced myocardial hypoxia, inhibition of angiogenic stimuli, and alterations in responsiveness of endothelial cells to those stimuli. Our working hypothesis is that HIF-1 levels and thus HIF-1 signaling in the developing myocardium will be reduced by TCDD treatment in vivo during a critical stage and in particularly sensitive sites during heart morphogenesis. This inadequate HIF-1 signaling will subsequently result in outflow tract (OFT) and coronary vasculature defects. Our current data using the chicken embryo model showed a marked decrease in the intensity of immunostaining for HIF-1α nuclear expression in the OFT myocardium of TCDD-treated embryos. This area at the base of the OFT is particularly hypoxic during normal development; where endothelial cells initially form a concentrated anastomosing network known as the peritruncal ring; and where the left and right coronary arteries eventually connect to the aortic lumen. Consistent with this finding, anomalies of the proximal coronaries were detected after TCDD treatment and HIF-1α protein levels decreased in a TCDD dose-dependent manner

    Ultrathin Iron Oxide Films on Cu(100).

    Get PDF
    In this investigation, I have focused on understanding the structure and morphology of ultrathin iron oxide films and characterizing them by STM and LEED. The room temperature Fe deposition results in a layer by layer growth. The oxidation was accomplished by annealing the sample to 810K in ambient oxygen. Two distinct oxide surface structures were observed depending on initial Fe coverage. For deposited Fe films of less than 2 ML, an oxide layer was formed with preferential growth along two perpendicular directions with a banded coarse and a hexagonal fine superstructure. As the initial Fe coverage above 2 ML, a new structure was observed consisting of uniformly thick patches of oxide with large, atomically-flat terraces. The oxide, that forms at low coverage was identified as FeO(111), while the structure at higher Fe coverage was identified as Fe3O4 on the basis of a model consistent with both STM and LEED, and thermodynamic data

    Aerobic physical activity and resistance training: an application of the theory of planned behavior among adults with type 2 diabetes in a random, national sample of Canadians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aerobic physical activity (PA) and resistance training are paramount in the treatment and management of type 2 diabetes (T2D), but few studies have examined the determinants of both types of exercise in the same sample.</p> <p>Objective</p> <p>The primary purpose was to investigate the utility of the Theory of Planned Behavior (TPB) in explaining aerobic PA and resistance training in a population sample of T2D adults.</p> <p>Methods</p> <p>A total of 244 individuals were recruited through a random national sample which was created by generating a random list of household phone numbers. The list was proportionate to the actual number of household telephone numbers for each Canadian province (with the exception of Quebec). These individuals completed self-report TPB constructs of attitude, subjective norm, perceived behavioral control and intention, and a 3-month follow-up that assessed aerobic PA and resistance training.</p> <p>Results</p> <p>TPB explained 10% and 8% of the variance respectively for aerobic PA and resistance training; and accounted for 39% and 45% of the variance respectively for aerobic PA and resistance training intentions.</p> <p>Conclusion</p> <p>These results may guide the development of appropriate PA interventions for aerobic PA and resistance training based on the TPB.</p

    Population-Based Estimates of Physical Activity for Adults with Type 2 Diabetes: A Cautionary Tale of Potential Confounding by Weight Status

    Get PDF
    At a population level, the method used to determine those meeting physical activity guidelines has important implications, as estimating “sufficient” physical activity might be confounded by weight status. The objective of this study was to test the difference between three methods in estimating the prevalence of “sufficient activity” among Canadian adults with type 2 diabetes in a large population sample (N = 1614) while considering the role of weight status as a potential confounder. Our results revealed that estimates of physical activity levels vary by BMI categories, depending on the methods examined. Although physical activity levels were lower in the obese, their energy expenditure estimates were not different from those who were overweight or of a healthy weight. The implications of these findings are that biased estimates of physical activity at a population level may result in inappropriate classification of adults with type 2 diabetes as “sufficiently active” and that the inclusion of body weight in estimating physical activity prevalence should be approached with caution
    corecore