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Abstract  

Background: Polygenic hazard scores (PHS) can identify individuals with increased risk of 

prostate cancer. We estimated the benefit of additional SNPs on performance of a previously 

validated PHS (PHS46). 

Materials and Method: 180 SNPs, shown to be previously associated with prostate cancer, were 5 

used to develop a PHS model in men with European ancestry. A machine-learning approach, 

LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients 

in the training set (75,596 men). Performance of the resulting model was evaluated in the 

testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive 

predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between 10 

individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 

20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 

20% (PPV80) and top 5% (PPV95) of PHS as the fraction of individuals with elevated PSA that 

were diagnosed with clinically significant prostate cancer on biopsy. 

Results: 166 SNPs had non-zero coefficients in the Cox model (PHS166). All HR metrics 15 

showed significant improvements for PHS166 compared to PHS46: HR95/50 increased from 

3.72 to 5.09, HR80/20 increased from 6.12 to 9.45, and HR20/50 decreased from 0.41 to 0.34. 

By contrast, no significant differences were observed in PPV of PSA testing for clinically 

significant prostate cancer. 

Conclusion: Incorporating 120 additional SNPs (PHS166 vs PHS46) significantly improved HRs 20 

for prostate cancer, while PPV of PSA testing remained the same. 
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Introduction  

 Optimal prostate cancer screening strategies seek to strike a balance between 

identifying clinically significant and potentially lethal cases that require treatment, while 

minimizing overdiagnosis of indolent, lower-risk cases that do not need radical treatment1–3. 

Genetic risk models have emerged as potentially useful tools that identify individuals with 5 

greater risk for being diagnosied with prostate cancer4,5, and so help inform if and when to 

initiate screening for an individual. A subset of these models called polygenic hazard scores 

(PHS) seeks to directly identify associations between common genetic variants and the age of 

diagnosis of prostate cancer by utilizing the framework of time-to-event analyses1,6. 

We have previously reported on a PHS model for prostate cancer, PHS46, that 10 

demonstrated excellent performance in an independent test set of men from varied genetic 

ancestries6. The model incorporates genetic data of 46 unique single nucleotide polymorphisms 

(SNPs), and was identified through a systematic search of European men genotyped on the 

iCOGS chipset (Illumina, San Diego, CA). With an ever-increasing list of loci associated with 

prostate cancer in the literature7–9, we sought to determine what effect, if any, the incorporation 15 

of additional SNPs would have on the performance of PHS46. 

To this end, we employed a machine-learning approach, LASSO-regularized Cox 

regression,10,11 to select SNPs from a list that included the 46 used in PHS46, as well as over 

100 SNPs identified in previous analyses as having genome-wide significance for association 

with prostate cancer7. LASSO-regularized regression is an established variable selection 20 

technique in datasets with a large number of predictors and has been previously implemented 

as a SNP selection tool for a breast cancer polygenic risk score12. Performance metrics 

describing statistical model goodness-of-fit and clinically actionable screening utility of the 

LASSO-regularized PHS model for prostate cancer were compared with those achieved with 

PHS46 to determine the potential benefit of incorporating additional SNPs in polygenic hazard 25 

models.  
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Material and Methods 

Study dataset  

 We obtained genotype and phenotype data from the PRACTICAL13 consortium for this 

analysis. Genotyping was performed previously on either OncoArray13 or iCOGS9 chips, and 

these data were previously imputed using the 1000 Genomes reference panel14. Missing SNP 5 

calls were replaced with the mean of the genotyped data for that SNP in the training set1,15. In 

total, data from 82,007 men with European genetic ancestry (Supplementary Table 1)13,16 were 

available for this analysis. A testing set consisting of 6,411 men (4,828 controls and 1,583 

cases) enrolled in the ProtecT clinical trial was set aside for estimating the performance of the 

final PHS models. The data from ProtecT were chosen as the testing set because they are well 10 

characterized and were previously used for validation of PHS461, allowing us to directly 

benchmark the performance of the updated model against previous iterations. The ProtecT trial 

also included biopsies of participants with elevated prostate-specific antigen (PSA) level, which 

permits analysis of the positive predictive value of the current clinical standard for screening, 

PSA testing. The remaining 75,596 individuals (25,127 controls and 50,469 cases) were used 15 

for training of the model. This first analysis was limited to men of European descent because of 

much greater data availability in that population, but our previous work has shown that 

development in Europeans can inform careful future work to assess and improve performance 

in other ancestries17. 

 20 

Model development using LASSO regularization 

 A list of published SNPs previously identified1,7 to be associated with prostate cancer 

was compiled. In total, 180 unique SNPs were considered for estimation within the PHS model 

framework. An initial screening was conducted to identify pairs of SNPs that were highly 

correlated (R2 > 0.95). For each pair of highly correlated SNPs, a univariable Cox proportional 25 

hazards model using age of diagnosis of prostate cancer as the time to event was calculated for 
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each SNP in the pair, and the one with the larger p-value was discarded. The remaining SNPs 

were included as candidates for the new PHS model. The R (v.4.0.1) package ‘glmnet’ was 

used to estimate a LASSO-regularized Cox-proportional hazards model10,11 using age of 

diagnosis of prostate cancer as the time to event. The genetic data of candidate SNPs and first 

four European ancestry principal components were included as predictors. Controls were 5 

censored at age of last follow-up. The hyper-parameter of the LASSO-regularized model, 

lambda, was selected using 10-fold cross-validation10,11. The final form of the LASSO model 

was estimated at the value of lambda that minimized the mean cross-validated error. 

 

Characterization of LASSO-regularized PHS model 10 

 The PHS score for each of the individuals in the training and testing set was estimated 

as the weighted sum of the genetic counts of each of the SNPs in the PHS model, using the 

LASSO model coefficients as weights. Distributions of the new PHS score were compared 

qualitatively between training and testing groups to confirm that the model was appropriately 

calibrated for use in the testing set.  15 

 We also sought to assess how the LASSO-regularized PHS score compared to family 

history in explaining the variation in age at diagnosis of prostate cancer. A multivariable Cox 

proportional hazards model was estimated using the age at diagnosis of any prostate cancer as 

the time to event, and the PHS score and family history as predictors in both training and testing 

sets, separately. The family history variable was coded as a binary variable: “None” or “One or 20 

more affected first-degree relatives”. Observations with missing family history values were 

removed from the analysis. The explained relative risk18 (ERR)  of each of the covariables as 

well as the full model were estimated using the “clinfun” software package in R, and provided a 

quantifiable measure for the importance of each variable in the model. Empirical confidence 

intervals for ERR were estimated using 1000 bootstrapped iterations.  25 
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Performance comparison between PHS46 and LASSO-regularized PHS 

 Performance in the testing set was assessed using hazard ratios (HRs) and positive 

predictive value (PPV), as described below. In each case, performance metrics were generated 

for the newly developed LASSO PHS model and for PHS46. Model coefficients for PHS46 were 

obtained from the literature17. For each performance metric, one thousand bootstrap samples of 5 

the testing set were used to generate empirical 95% confidence intervals for LASSO PHS and 

for PHS46. In addition, bootstrapped 95% confidence intervals were generated for the 

percentage change of each performance metric between the two models, using PHS46 as the 

reference. Percent changes were deemed statistically significant if the bootstrapped 95% 

confidence interval did not include 0.  10 

 

HR performance 

 Calibration Cox proportional hazards models were fit to the bootstrapped testing data 

using the PHS score as the sole predictor and the age-of-diagnosis of prostate cancer as the 

dependent variable. The model coefficient of this Cox regression model is referred to as the 15 

calibration factor. Next, the hazard ratio between two PHS groups, such as those in the top 5% 

to the middle 40% (HR95/50), is estimated as the exponential of the product of the calibration 

factor and the difference in mean PHS scores of each group. Hazard ratios between the top 

20% to the bottom 20% (HR80/20) and the bottom 20% to the middle 40% (HR20/50) were 

similarly calculated. The PHS cutoffs used to define these groups were determined from the 20 

distribution of PHS in the training set controls under 70 years of age1,15.  

A similar strategy was used to estimate the HR performance for clinically significant 

prostate cancer.  The criteria for clinical significance were any of: Gleason score >=7, stage T3-

T4, PSA concentration >= 10ng/mL, pelvic lymph nodal metastasis, or distant metastasis19. In 

this analysis, controls and low-risk (i.e., not clinically significant) cancers were censored at age 25 

of last follow-up and age of diagnosis, respectively. HRs are reported after sample-weight 
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correction1,17,20 using the total number of cases and controls in the ProtecT trial to generate 

weighting factors.  

Sample-weight corrected HR values were generated using the age at diagnosis of non-

clinically significant prostate cancer. Individuals with clinically significant prostate cancer were 

removed from this secondary analysis.  5 

 

PPV performance 

 One indicator of clinical utility of a risk-stratification approach like PHS is whether it can 

be used to improve the PPV of the standard clinical screening test, prostate-specific antigen 

(PSA). As a population-based screening study, ProtecT provides biopsy results of both cases 10 

and controls with a positive PSA result (i.e., ≥3 ng/mL). PPV performance of each model was 

estimated by randomly sampling individuals within the testing set with positive PSA results, 

while maintaining the case to control ratio of the ProtecT study (1:2). PPV is calculated as the 

fraction of positive PSA individuals in the top 20% (PPV80) or top 5% (PPV95) of PHS scores 

that had clinically significant prostate cancer.  15 

 

Cumulative incidence curves for LASSO-PHS in United Kingdom 

To illustrate the utility of the LASSO PHS model in informing prostate cancer screening, 

cumulative incidence curves for various PHS risk groups were estimated, as described 

previously21. The age-specific general cumulative incidence curve for prostate cancer was 20 

estimated for the United Kingdom population, aged 40 to 70, using data from Cancer Research 

UK 2015-201722. The proportion of clinically significant and non-clinically significant prostate 

cancer at each age was estimated using data from the Cluster Randomized Trial of PSA Testing 

for Prostate Cancer (CAP) trial23. Disease-specific cumulative incidence curves for clinically 

significant and non-clinically-significant prostate cancer were estimated by multiplying the 25 

general cumulative incidence curve by their respective proportions. The risk-adjusted incidence 
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curves for individuals in the upper 5th percentile and upper 20th percentile were estimated by 

multiplying the disease-specific cumulative incidence curves by the mean value of HR95/50 and 

HR80/50 in the testing set, respectively. Hazard ratios were obtained using the age of diagnosis 

of clinically significant prostate cancer as the time-to-event and after sample-weight correction.  

 5 

 

Results  

SNP screening and PHS model training 

 Of the 180 SNPs originally considered for this study, 6 SNPs were discarded in the initial 

screening process of removing highly correlated SNPs. Of the 174 remaining candidate SNPs 10 

(Supplementary Table 2), 166 had non-zero LASSO model coefficients and were selected for 

the final PHS model (PHS166). 

The majority of the 166 variants (97, 53%) used in PHS166 were classified as intron variants 

(Supplementary Table 3). Of the genes associated with variants from PHS166, HNF1B on 

chromosome 17 was associated with the greatest number of variants (4). Additional genes that 15 

were associated with multiple variants included ITGA6(x2), LINC00506(x2), PDLIM5(x2), 

TERT(x2), CTD-2194D22.4(x2), RGS17(x2), LOC105375751(x2), and CASC8(x3). Two of the 

SNPs used in PHS166 (rs721048 and rs10993994) were designated as ‘pathogenic’ by 

ClinVar24 and associated with hereditary prostate cancer.  

 20 

PHS166 model characterization 

Distributions of PHS166 score were visually consistent between training and testing sets 

(Supplementary Figure 1). The 20th, 30th, 70th, 80th, and 98th percentiles of the reference PHS 

risk scores (controls in training set) were estimated as -0.411, -0.307, 0.048, 0.154, and 0.557, 

respectively. 25 
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PHS166 contributed roughly 80 to 90 percent of the total explained relative risk 

(Supplementary Table 4) of a Cox proportional hazards model containing both family history and 

PHS166. Family history was not found to be statistically significantly associated with age at 

diagnosis of prostate cancer in the testing set1.  

 5 

Performance comparison – PHS46 vs. PHS166  

All PHS166 HR-based performance metrics showed statistically significant 

improvements compared to PHS46 (Table 1), for both any and clinically significant prostate 

cancer. The mean HR95/50 and HR80/20 values for PHS166 were roughly 36 to 55% greater 

than those for PHS46. For example, HR80/20 for clinically significant prostate cancer increased 10 

from 6.12 to 9.45. Similarly, HR20/50 for PHS166 was, on average, 18% lower than that for 

PHS46. Similar trends were observed for non-clinically significant prostate cancer 

(Supplementary Table 5). No significant differences between models were observed in either of 

the PPV-based performance metrics (Table 2). Among individuals in the top 20% of risk scores 

with a positive PSA test, the estimated mean PPV for clinically significant prostate cancer was 15 

roughly 0.19 irrespective of the model used – indicating approximately 19% of positive PSA 

tests in this risk group yielded a diagnosis of clinically significant prostate cancer. By 

comparison, approximately 13% of all positive PSA tests resulted in a diagnosis of clinically 

significant prostate cancer.  

 20 

Cumulative incidence curves for PHS166 in United Kingdom 

Cumulative incidence curves for clinically significant and non-clinically significant 

prostate cancer for the upper 5th percentile (>95th percentile) and upper 20th percentile (>80th 

percentile) of PHS166 scores in the United Kingdom demonstrated expected stratification of 

prostate cancer risk (Figure 1). 25 

 



 

 15 

Discussion 

Using a machine-learning, LASSO-regularized Cox framework, we identified 166 SNPs to be 

included in a polygenic hazard model (PHS166) for association with age of diagnosis of prostate 

cancer in men of European genetic ancestry. Variants used in PHS166 were associated with 

several genes, including those encoding for hepatocyte nuclear factor-1 beta (HNF1B), cancer 5 

susceptibility 8 (CASC8), and telomerase (TERT). PHS166 also explained a much larger 

percentage of the total explained relative risk compared to family history, suggesting that the 

former is important for stratifying patients’ risk. When compared to the original PHS, consisting 

of 46 SNPs, PHS166 demonstrated substantially improved HR performance. For example, the 

HR for clinically significant prostate cancer comparing the upper and lower quintiles of genetic 10 

risk increased by 56% when using PHS166. No significant improvements were found in the PPV 

of PSA testing when using PHS to stratify risk. 

Increased separation in hazard rates between PHS risk groups may allow for more nuance 

in clinical decision making in certain scenarios. Accurate identification of low, intermediate, and 

high PHS risk groups in prostate cancer may help in decisions of when (or if) to initiate 15 

screening as well as possibly improving the interpretation of the disease screens25. Targeting 

screening to men in the upper percentiles of polygenic risk as opposed to those in the lowest 

risk group may reduce the proportion of overdiagnosed indolent cancers from 43% to 19%26,27. 

Risk stratification achieved here by PHS166 is similar or better than commonly used clinical 

tools for diseases such as breast cancer, diabetes, and cardiovascular disease25,28–30. Clinically 20 

meaningful risk stratification is illustrated by the estimated cumulative incidence curves in Figure 

1. This effect is particularly pronounced for clinically significant disease because of the 

increased proportion of clinically significant cases observed at older ages2,21,23. 

The lack of improvement in PPV in this study may suggest a “performance plateau” when 

using PHS to define broad risk categories for certain clinical applications. A similar effect has 25 

been previously described for prostate cancer polygenic models, in the context of using risk 
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scores to discriminate prostate biopsy outcomes31. Some of the precision in a score may also 

be diluted in broad clinical applications. The PPV analysis here is applied to participants in the 

ProtecT trial, which enrolled men aged 50 to 69 years, and screening in the trial was offered 

irrespective of underlying genetic risk2. Further investigation is needed to learn whether timing 

screening according to genetic risk might better leverage the superior HR performance of 5 

PHS166 risk score to improve the PPV of PSA testing. 

LASSO frameworks have been used to identify SNPs for polygenic risk scores of several 

phenotypes, including fracture risk32, type 2 diabetes33, and breast cancer12. In this work, we 

have extended the application of LASSO to select SNPs in a polygenic hazard model of 

prostate cancer from a list of candidates previously identified through logistic and time-to-event 10 

analysis. Simulation studies11 have suggested that LASSO provides more robust estimates than 

stepwise selection in cases with both a few large effects, as well as many small effects. As new 

prostate cancer associated variants are discovered, this framework can be easily implemented 

to develop updated polygenic hazard models. 

One limitation of PHS166 is that it was entirely developed and tested in European men. 15 

However, a well-vetted, well-tested PHS model for men of European genetic ancestry can be 

used as a starting block for developing models for other genetic ancestries, where large-scale 

databases are often more scarce, as has been shown for PHS4617,34. Furthermore, some of the 

SNPs selected for incorporation into PHS166 were originally discovered in analyses that 

included men from the ProtecT testing set. Therefore, the improvements in HRs observed for 20 

PHS166 may be overestimated. However, this bias is likely small, given that the testing set was 

only a small fraction (less than 5%) of the data used in prior discovery analyses, and the 

ProtecT data were not used to calculate SNP weights in PHS166. The LASSO-regularized Cox 

framework was also used to minimize any potential for over-fitting35 by introducing penalties for 

large effect sizes. In addition, this study uses age of diagnosis as the time-to-event variable, and 25 
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any preceding period of undiagnosed disease is unknown. Hypothetical perfect measurement of 

age of onset would likely further improve performance of the PHS model.  

 In conclusion, we applied a machine-learning, LASSO-regularized Cox regression 

framework to develop a larger PHS that includes 166 previously discovered SNPs. When 

comparing the performance of PHS166 to the original model, PHS46, we found that 5 

incorporating 120 more SNPs significantly improved HRs for clinically significant prostate 

cancer. However, incorporating more SNPs did not improve on the ability of PHS46 to inform 

the PPV of PSA testing in the ProtecT dataset, perhaps illustrating a plateau effect and/or 

dilution of risk stratification in a broad clinical application. 

  10 
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Figure Legends 

Figure 1. Cumulative incidence curves for PHS166. Risk-adjusted cumulative incidence 

curves for the upper 5th percentile (>95th percentile) and upper 20th percentile (>80th percentile) 

of PHS166 scores for clinically significant and non-clinically-significant prostate cancer. 

Reference curves representing the population average cumulative incidence (i.e., unadjusted for 5 

genetic risk).  
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Table 1. HR performance in testing set.  Sample-weight-corrected hazard ratios are 

estimated for PHS166 and PHS46 in the testing set, using age-of-onset of any or clinically 

significant prostate cancer. The percent change for each metric is calculated using the value of 

PHS46 as the reference. Mean values and 95% confidence intervals are reported.  

Type of cancer HR PHS46 PHS166 Change (%) 

Any 

HR95/50 3.29 [2.73,3.77] 4.45 [3.68,5.06] 36 [18,53] 

HR80/20 5.15 [3.92,6.18] 7.85 [6.04,9.33] 53 [25,78] 

HR20/50 0.44 [0.40,0.49] 0.37 [0.33,0.40] -18 [-25,-10] 

Clinically 

Significant 

HR95/50 3.72 [2.89,4.43] 5.09 [3.84,6.05] 37 [13,59] 

HR80/20 6.12 [4.18,7.67] 9.45 [6.17,11.79] 55 [17,88] 

HR20/50 0.41 [0.35,0.47] 0.34 [0.29,0.39] -18 [-28,-9] 

 5 
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Table 2. PPV performance in testing set.  Positive predictive value (PPV) of PSA testing for 

clinically significant prostate cancer using top 5% (PPV95) and top 20% (PPV80) cutoffs of 

PHS166 and PHS46 risk scores. The percent change for each metric is calculated using the 

value of PHS46 as the reference.  

PPV PHS46 PHS166 Change (%) 

PPV95 0.227 [0.159,0.292] 0.239 [0.171,0.305] 6.3 [-25.5,32.1] 

PPV80 0.192 [0.155,0.231] 0.187 [0.150,0.222] -2.8 [-16.3,9.9] 

 5 

 


