10,069 research outputs found
Six Peaks Visible in the Redshift Distribution of 46,400 SDSS Quasars Agree with the Preferred Redshifts Predicted by the Decreasing Intrinsic Redshift Model
The redshift distribution of all 46,400 quasars in the Sloan Digital Sky
Survey (SDSS) Quasar Catalog III, Third Data Release, is examined. Six Peaks
that fall within the redshift window below z = 4, are visible. Their positions
agree with the preferred redshift values predicted by the decreasing intrinsic
redshift (DIR) model, even though this model was derived using completely
independent evidence. A power spectrum analysis of the full dataset confirms
the presence of a single, significant power peak at the expected redshift
period. Power peaks with the predicted period are also obtained when the upper
and lower halves of the redshift distribution are examined separately. The
periodicity detected is in linear z, as opposed to log(1+z). Because the peaks
in the SDSS quasar redshift distribution agree well with the preferred
redshifts predicted by the intrinsic redshift relation, we conclude that this
relation, and the peaks in the redshift distribution, likely both have the same
origin, and this may be intrinsic redshifts, or a common selection effect.
However, because of the way the intrinsic redshift relation was determined it
seems unlikely that one selection effect could have been responsible for both.Comment: 12 pages, 12 figure, accepted for publication in the Astrophysical
Journa
Second order statistics of NLOS indoor MIMO channels based on 5.2 GHz measurements
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available
Mn induced modifications of Ga 3d photoemission from (Ga, Mn)As: evidence for long range effects
Using synchrotron based photoemission, we have investigated the Mn-induced
changes in Ga 3d core level spectra from as-grown . Although Mn is located in Ga substitutional sites, and does
therefore not have any Ga nearest neighbours, the impact of Mn on the Ga core
level spectra is pronounced even at Mn concentrations in the range of 0.5%. The
analysis shows that each Mn atom affects a volume corresponding to a sphere
with around 1.4 nm diameter.Comment: Submitted to Physical Review B, Brief Repor
Distances of Quasars and Quasar-Like Galaxies: Further Evidence that QSOs may be Ejected from Active Galaxies
If high-redshift QSOs are ejected from the nuclei of low-redshift galaxies,
as some have claimed, a large portion of their redshift must be intrinsic
(non-Doppler). If these intrinsic components have preferred values, redshifts
will tend to cluster around these preferred values and produce peaks in the
redshift distribution. Doppler ejection and Hubble flow components will broaden
each peak. Because ejection velocities are randomly directed and Hubble flow
components are always positive, in this model all peaks are expected to show an
asymmetry, extending further out in the red wing. If peaks are present showing
this predicted asymmetry, it can lead directly to an estimate of quasar
distances. Using two quasar samples, one with high redshifts and one with low,
it is shown here that not only do all peaks in these two redshift distributions
occur at previously predicted preferred values, they also all show the
predicted extra extension in the red wing. For the low and high redshift
samples the mean cosmological components are found to be z and
, respectively. The difference can be explained by the improved
detection limit of the high redshift sample. These results offer further
evidence in favor of the model proposing that QSOs are ejected from active
galaxies.Comment: 11 pages, 6 figures, accepted for publication in The Astrophysical
Journa
Electron correlations in MnGaAs as seen by resonant electron spectroscopy and dynamical mean field theory
After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its
origin is still debated, and many doubts are related to the electronic
structure. Here we report an experimental and theoretical study of the valence
electron spectrum of Mn-doped GaAs. The experimental data are obtained through
the differences between off- and on-resonance photo-emission data. The
theoretical spectrum is calculated by means of a combination of
density-functional theory in the local density approximation and dynamical
mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver.
Theory is found to accurately reproduce measured data, and illustrates the
importance of correlation effects. Our results demonstrate that the Mn states
extend over a broad range of energy, including the top of the valence band, and
that no impurity band splits off from the valence band edge, while the induced
holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure
The Distribution of Redshifts in New Samples of Quasi-stellar Objects
Two new samples of QSOs have been constructed from recent surveys to test the
hypothesis that the redshift distribution of bright QSOs is periodic in
. The first of these comprises 57 different redshifts among all
known close pairs or multiple QSOs, with image separations 10\arcsec,
and the second consists of 39 QSOs selected through their X-ray emission and
their proximity to bright comparatively nearby active galaxies. The redshift
distributions of the samples are found to exhibit distinct peaks with a
periodic separation of in identical to that claimed
in earlier samples but now extended out to higher redshift peaks and 4.47, predicted by the formula but never seen before. The periodicity
is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is
present in these three datasets at an overall significance level -
, and appears not to be explicable by spectroscopic or similar
selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure
On Establishing Elastic–Plastic Properties of a Sphere by Indentation Testing
Instrumented indentation is a popular technique for determining mechanical properties of materials. Currently, the evaluation techniques of instrumented indentation are mostly limited to a flat substrate being indented by various shaped indenters (e.g., conical or spherical). This work investigates the possibility of extending instrumented indentation to non-flat surfaces. To this end, conical indentation of a sphere is investigated where two methodologies for establishing mechanical properties are explored. In the first approach, a semi-analytical approach is employed to determine the elastic modulus of the sphere utilizing the elastic unloading response (the “unloading slope”). In the second method, reverse analysis based on finite element analysis is used, where non-dimensional characteristic functions derived from the force–displacement response are utilized to determine the elastic modulus and yield strength. To investigate the accuracies of the proposed methodologies, selected numerical experiments have been performed and excellent agreement was obtained
On the Uniqueness and Sensitivity of Indentation Testing of Isotropic Materials
Instrumented indentation is a popular technique to extract the material properties of small scale structures. The uniqueness and sensitivity to experimental errors determine the practical usefulness of such experiments. Here, a method to identify test techniques that minimizes sensitivity to experimental erros is in indentation experiments developed. The methods are based on considering “shape functions,” which are sets of functions that describe the force–displacement relationship obtained during the indentation test. The concept of condition number is used to investigate the relative reliability of various possible dual indentation techniques. Interestingly, it was found that many dual indentation techniques can be as unreliable as single indentation techniques. Sensitivity analyses were employed for further understanding of the uniqueness and sensitivity to experimental errors of indentation techniques. The advantage of the Monte Carlo approach over other procedures is established. Practical guidelines regarding the selection of shape functions of force–displacement relationship and geometric parameters, while carrying out indentation analysis are provided. The results suggest that indentation experiments need to be very accurate to extract reliable material properties
A School-Based Exercise Intervention Program Increases Muscle Strength in Prepubertal Boys
This prospective controlled intervention study over 12 months evaluated the effect of exercise on muscular function, physical ability, and body composition in pre-pubertal boys. Sixty-eight boys aged 6–8 years, involved in a general school-based exercise program of 40 min per school day (200 min/week), were compared with 46 age-matched boys who participated in the general Swedish physical education curriculum of mean 60 min/week. Baseline and annual changes of body composition were measured by dual energy X-ray absorptiometry (DXA), stature, and body mass by standard equipments, isokinetic peak torque (PT) of the knee extensors, and flexors at 60 and 180 deg/sec by computerized dynamometer (Biodex) and vertical jump height (VJH) by a computerized electronic mat. The annual gain in stature and body mass was similar between the groups whereas the increase in total body and regional lean mass (P < .001) and fat mass (P < .001) was greater in the exercise group. The one-year gain in body mass-adjusted knee extensor and flexor PT at 180 deg/sec was significantly greater in the intervention group compared with the control group (P < .01, adjusted for age at baseline and P < .001, adjusted for age and muscle strength at baseline, resp.). There was no group difference in VJH. In conclusion, the increase in school-based physical education from 60 to 200 minutes per week enhances the development of lean body mass and muscle strength in pre-pubertal boys
- …