436 research outputs found
Shearfree perfect fluids with solenoidal magnetic curvature and a gamma-law equation of state
We show that shearfree perfect fluids obeying an equation of state p=(gamma
-1) mu are non-rotating or non-expanding under the assumption that the spatial
divergence of the magnetic part of the Weyl tensor is zero.Comment: 11 page
Vitamin E Attenuates the Progression of Non-Alcoholic Fatty Liver Disease Caused by Partial Hepatectomy in Mice
The progression of non-alcoholic fatty liver disease (NAFLD) likely involves a 'multiple hit' mechanism. We hypothesized that partial hepatectomy, a procedure performed frequently in patients with NAFLD, would accelerate the progression of disease.C57BL/6JolaHsd mice were fed a choline-deficient L-amino acid-defined diet (CD-AA) or a choline-sufficient L-amino acid-defined control diet (CS-AA). Part of the mice in the CD-AA group received a diet enriched in vitamin E (~20 mg /day). Two weeks after the start of the diet, mice underwent a partial hepatectomy or a sham operation.In the CD-AA group, NAFLD activity scores were significantly higher at 7 days after partial hepatectomy compared to the sham operated mice (3.7 ± 1.3 vs. 1.8 ± 0.7; P<0.05). In addition, TBARS, a measure for oxidative stress, in liver tissue of the CD-AA group were significantly higher at day 1, 3 and 7 after partial hepatectomy compared to the sham operated mice (P<0.05). Vitamin E therapy significantly reduced TBARS level at day 7 after partial hepatectomy compared to the CD-AA diet group (P< 0.05). Vitamin E suppletion reduced NAFLD activity score at day 7 after partial hepatectomy compared to the CD-AA group (2.3 ± 0.8 vs. 3.8 ± 1.0; P<0.05).Partial hepatectomy accelerates the progression of NAFLD. Disease progression induced by partial hepatectomy is substantially attenuated by vitamin E
Shear-free perfect fluids with a solenoidal electric curvature
We prove that the vorticity or the expansion vanishes for any shear-free
perfect fluid solution of the Einstein field equations where the pressure
satisfies a barotropic equation of state and the spatial divergence of the
electric part of the Weyl tensor is zero.Comment: 9 page
Tryptophan Metabolism via the Kynurenine Pathway:Implications for Graft Optimization during Machine Perfusion
Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP
Multiple functions of microfluidic platforms: Characterization and applications in tissue engineering and diagnosis of cancer
Microfluidic system, or lab-on-a-chip, has grown explosively. This system has been used in research for the first time and then entered in the clinical section. Due to economic reasons, this technique has been used for screening of laboratory and clinical indices. The microfluidic system solves some difficulties accompanied by clinical and biological applications. In this review, the interpretation and analysis of some recent developments in microfluidic systems in biomedical applications with more emphasis on tissue engineering and cancer will be discussed. Moreover, we try to discuss the features and functions of microfluidic systems. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
Subnormothermic Machine Perfusion of Steatotic Livers Results in Increased Energy Charge at the Cost of Anti-Oxidant Capacity Compared to Normothermic Perfusion
There continues to be significant debate regarding the most effective mode of ex situ machine perfusion of livers for transplantation. Subnormothermic (SNMP) and normothermic machine perfusion (NMP) are two methods with different benefits. We examined the metabolomic profiles of discarded steatotic human livers during three hours of subnormothermic or normothermic machine perfusion. Steatotic livers regenerate higher stores of ATP during SNMP than NMP. However, there is a significant depletion of available glutathione during SNMP, likely due to an inability to overcome the high energy threshold needed to synthesize glutathione. This highlights the increased oxidative stress apparent in steatotic livers. Rescue of discarded steatotic livers with machine perfusion may require the optimization of redox status through repletion or supplementation of reducing agents
Magnetic sensing for microstructural assessment of power station steels: magnetic Barkhausen noise and minor loop measurements
There are currently no techniques available to monitor the microstructural condition of power station steel components in-service (at elevated temperatures). Electromagnetic (EM) inspection methods have the potential to provide a solution to this problem. Tests have been carried out on power generation steel (P9 and T22) samples with different microstructural states using major and minor B-H loop measurements and correlations established between EM properties and material properties such as Vickers hardness. These correlations will be used to develop a field deployable tool for the quantification of degradation in power station steels
Tamoxifen Is Effective in the Treatment of Leishmania amazonensis Infections in Mice
Leishmaniasis is an antropozoonotic disease with a wide range of clinical manifestations. In humans, signs of disease vary from skin and mucosal ulcers to enlargement of internal organs such as the liver and spleen. The unicellular parasite Leishmania amazonensis is able to infect humans and cause localized or diffuse skin lesions. The treatment for this disease is difficult, as it requires prolonged and painful applications of toxic drugs that are poorly tolerated. Therefore, a key area in leishmaniasis research is the study of new therapeutic schemes and less toxic drugs. The present report is based on the investigation of tamoxifen's activity (a compound that has been in clinical use since the 1970s for the treatment of breast cancer) in the treatment of mice experimentally infected with L. amazonensis. We observed that infected mice treated with 20 mg/kg/day of tamoxifen for 15 days showed a significant clinical and parasitological response, with reduction in the size of lesions and ulcers and decreased numbers of parasites. These promising results pave the way for further testing of this drug as a new alternative in the chemotherapy of leishmaniasis
Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies
There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation
- …