35,180 research outputs found

    Controllable quantum scars in semiconductor quantum dots

    Get PDF
    Quantum scars are enhancements of quantum probability density along classical periodic orbits. We study the recently discovered phenomenon of strong, perturbation-induced quantum scarring in the two-dimensional harmonic oscillator exposed to a homogeneous magnetic field. We demonstrate that both the geometry and the orientation of the scars are fully controllable with a magnetic field and a focused perturbative potential, respectively. These properties may open a path into an experimental scheme to manipulate electric currents in nanostructures fabricated in a two-dimensional electron gas.Comment: 5 pages, 4 figure

    Beyond the First Recurrence in Scar Phenomena

    Full text link
    The scarring effect of short unstable periodic orbits up to times of the order of the first recurrence is well understood. Much less is known, however, about what happens past this short-time limit. By considering the evolution of a dynamically averaged wave packet, we show that the dynamics for longer times is controlled by only a few related short periodic orbits and their interplay.Comment: 4 pages, 4 Postscript figures, submitted to Phys. Rev. Let

    Localization of Eigenfunctions in the Stadium Billiard

    Full text link
    We present a systematic survey of scarring and symmetry effects in the stadium billiard. The localization of individual eigenfunctions in Husimi phase space is studied first, and it is demonstrated that on average there is more localization than can be accounted for on the basis of random-matrix theory, even after removal of bouncing-ball states and visible scars. A major point of the paper is that symmetry considerations, including parity and time-reversal symmetries, enter to influence the total amount of localization. The properties of the local density of states spectrum are also investigated, as a function of phase space location. Aside from the bouncing-ball region of phase space, excess localization of the spectrum is found on short periodic orbits and along certain symmetry-related lines; the origin of all these sources of localization is discussed quantitatively and comparison is made with analytical predictions. Scarring is observed to be present in all the energy ranges considered. In light of these results the excess localization in individual eigenstates is interpreted as being primarily due to symmetry effects; another source of excess localization, scarring by multiple unstable periodic orbits, is smaller by a factor of â„Ź\sqrt{\hbar}.Comment: 31 pages, including 10 figure

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure
    • …
    corecore