5 research outputs found
Recommended from our members
Robust thermal stability for batch process intensification with model predictive control
Thermal runaways in exothermic batch reactors present major safety and economic issues for industry. Control systems currently used are not capable of detecting thermal runaway behaviour and achieve nominally safe operation by carrying out the reaction at a low temperature. Recently, improvements in safety and process intensity have been achieved by using Model Predictive Control (MPC) with embedded stability criteria. The reliance of this approach on accurate model predictions makes plantmodel mismatch a crucial issue. The most common source of plant-model mismatch is uncertainty of model parameters. Scenario-based MPC and worst case MPC are used with stability criterion K and Lyapunov exponents in this work. The effect of all uncertain parameters on thermal runaway potential can be identified easily for simulations in this work. Hence, worst case MPC results in a computationally more efficient control scheme than scenario-based MPC, whilst ensuring the same extent of safety and process intensification
ΠΠΠΠΠ-Π‘ΠΠΠΠ’Π ΠΠΠΠ’Π ΠΠΠ― Π ΠΠΠΠΠ¦ΠΠΠΠΠΠΠ ΠΠΠΠΠ’ΠΠ ΠΠΠΠ ΠΠΠΠΠ’ΠΠ ΠΠ Π ΠΠΠΠΠ«Π₯ ΠΠ’ΠΠΠΠΠΠΠ
In order to solve the problem of continuous or periodic monitoring of water areas affected by radioactive contamination in the result of scheduled emissions in nuclear power plants or in the result of emergency situations in nuclear fuel cycle plants we need to develop measurement instruments with advanced mathematics and program support to assess the level of radioactive contamination with required accuracy. The aim of theoretical research was to optimize detection device construction, estimate spectrometer metrological parameters in given measurement geometries, and determine effective position of detection device in the process of in situ measurements. This device consists of spectrometric scintillation probe packed into sealed container (detection device) based on NaI(T1) crystal of Γ 63 Γ 63 mm or Γ 63 Γ 160 mm size, cable reel with deep-sea cable and a tablet PC for data processing and displaying. The container withstands static hydraulic pressure up to 5 MPa and can be used for measurements at depths of 500 m maximum. Probe measures energy distribution of gammaradiation with energy from 70 keV to 3000 keV. The implemented three-dimensional system for detection device position and orientation determination allows automatic operation of the device (without operator) for water areas or bottom sediment scanning. The spectrometer can output measurement results with threedimensional geographical coordinates as index maps of distribution with necessary resolution and accuracy. Monte Carlo models of spectrometer and controlled objects are developed in order to determine the detector response functions to given radionuclides in given measurement geometries without use of expensive standard measures of activity. Multifunction gamma-spectrometer for in situ radiation monitoring of water areas and bottom sediments was developed and constructed. In the result of theoretical researches the response functions have been calculated in the form of theoretical spectra of monitored radionuclides in definite measuring geometries. The results of mathematical modeling of the gamma-emitting transfer process allowed to estimate effective position of detection device for in situ measurements of specific activity radionuclides 134Cs and 137Cs in bottom sediments.Β ΠΠ°Π΄Π°ΡΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠΎΠ², ΠΏΠΎΠ΄Π²Π΅ΡΠ³ΡΠΈΡ
ΡΡ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΌΡ Π·Π°Π³ΡΡΠ·Π½Π΅Π½ΠΈΡ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ°ΡΠ½ΡΡ
Π²ΡΠ±ΡΠΎΡΠΎΠ² ΠΠΠ‘ ΠΈΠ»ΠΈ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ Π½Π΅ΡΡΠ°ΡΠ½ΡΡ
ΡΠΈΡΡΠ°ΡΠΈΠΉ Π½Π° ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΡΡ
ΡΠΎΠΏΠ»ΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π°, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΡΡΠ΅Π΄ΡΡΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Ρ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ
ΠΎΡΠ΅Π½ΠΈΡΡ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
Π·Π°Π³ΡΡΠ·Π½Π΅Π½ΠΈΠΉ Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠ½ΠΎΡΡΡΡ. Π¦Π΅Π»Ρ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π·Π°ΠΊΠ»ΡΡΠ°Π»Π°ΡΡ Π² ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π° ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΌΠ΅ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠ° Π² Π·Π°Π΄Π°Π½Π½ΡΡ
Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠ° Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ in situ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² 134CsΒ ΠΈ 137CsΒ Π² Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΠΎΠ½ΡΠ΅-ΠΠ°ΡΠ»ΠΎ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ: ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ, Π²ΠΎΠ΄Ρ ΠΈ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Π‘ΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΏΡΠΈΠ±ΠΎΡ, ΡΠΎΡΡΠΎΡΡΠΈΠΉ ΠΈΠ· ΡΠ°Π·ΠΌΠ΅ΡΠ°Π΅ΠΌΠΎΠ³ΠΎ Π² Π³Π΅ΡΠΌΠ΅ΡΠΈΡΠ½ΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅ΠΉΠ½Π΅ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠΌ NaI(T1) ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌΠΈ Γ 63 Γ 63 ΠΌΠΌ ΠΈΠ»ΠΈ Γ 63 Γ 160 ΠΌΠΌ, Π²ΡΡΡΠΊΠΈ Ρ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ²ΠΎΠ΄Π½ΡΠΌ ΠΊΠ°Π±Π΅Π»Π΅ΠΌ ΠΈ ΠΏΠ»Π°Π½ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ° Π΄Π»Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ. ΠΠΎΠ½ΡΠ΅ΠΉΠ½Π΅Ρ ΡΡΡΠΎΠΉΡΠΈΠ² ΠΊ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π³ΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π΄ΠΎ 5 ΠΠΠ°, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° Π³Π»ΡΠ±ΠΈΠ½Π°Ρ
Π΄ΠΎ 500 ΠΌ. Π£ΡΡΡΠΎΠΉΡΡΠ²ΠΎ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π³Π°ΠΌΠΌΠ°-ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΠΎΡ 70 Π΄ΠΎ 3000 ΠΊΡΠ. Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ Π² Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ (Π±Π΅Π· ΡΡΠ°ΡΡΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ°) Π΄Π»Ρ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²ΠΎΠ΄Π½ΠΎΠΉ Π°ΠΊΠ²Π°ΡΠΎΡΠΈΠΈ ΠΈ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Ρ ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΡΠΌΠΈ Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°ΡΡ-ΡΡ
Π΅ΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠΉ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΠΎΡΡΡΡ ΠΈ ΡΠΎΡΠ½ΠΎΡΡΡΡ. ΠΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΎΡΠΊΠ»ΠΈΠΊΠ° Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ° ΠΊ Π·Π°Π΄Π°Π½Π½ΡΠΌ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄Π°ΠΌ Π² ΡΡΠ΅Π±ΡΠ΅ΠΌΡΡ
Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π±Π΅Π· ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠΈΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ
ΠΌΠ΅Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΠΎΠ½ΡΠ΅-ΠΠ°ΡΠ»ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠ° ΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ. ΠΠ»Ρ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΈ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ in situ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ ΠΌΠ½ΠΎΠ³ΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΏΠΎΡΡΠ°ΡΠΈΠ²Π½ΡΠΉ Π³Π°ΠΌΠΌΠ°-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π±ΡΠ»ΠΈ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡΠΊΠ»ΠΈΠΊΠ° ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠ° ΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΡΠΌ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄Π°ΠΌ Π² Π·Π°Π΄Π°Π½Π½ΡΡ
Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° Π³Π°ΠΌΠΌΠ°-ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΠΏΠΎΠ·ΠΈΡΠΈΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ in situ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² 134Cs ΠΈ 137Cs Π² Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
.
ΠΠ°ΠΌΠΌΠ°-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ Π΄Π»Ρ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° Π°ΠΊΠ²Π°ΡΠΎΡΠΈΠΉ ΠΈ Π΄ΠΎΠ½Π½ΡΡ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ
In order to solve the problem of continuous or periodic monitoring of water areas affected by radioactive
contamination in the result of scheduled emissions in nuclear power plants or in the result of emergency situations in nuclear fuel cycle plants we need to develop measurement instruments with advanced mathematics
and program support to assess the level of radioactive contamination with required accuracy. The aim of theoretical research was to optimize detection device construction, estimate spectrometer metrological parameters in given measurement geometries, and determine effective position of detection device in the process of in situ measurements. This device consists of spectrometric scintillation probe packed into sealed container (detection device) based on NaI(T1) crystal of Γ 63 Γ 63 mm or Γ 63 Γ 160 mm size, cable reel with deep-sea cable and a tablet PC for data processing and displaying. The container withstands static hydraulic pressure up to 5 MPa and can be used for measurements at depths of 500 m maximum. Probe measures energy distribution of gamma-radiation with energy from 70 keV to 3000 keV. The implemented three-dimensional system for detection device position and orientation determination allows automatic operation of the device (without operator) for water areas or bottom sediment scanning. The spectrometer can output measurement results with three-dimensional geographical coordinates as index maps of distribution with necessary resolution and accuracy. Monte Carlo models of spectrometer and controlled objects are developed in order to determine the detector response functions to given radionuclides in given measurement geometries without use of expensive standard measures of activity. Multifunction gamma-spectrometer for in situ radiation monitoring of water areas and bottom sediments was developed and constructed. In the result of theoretical researches the response functions have been calculated in the form of theoretical spectra of monitored radionuclides in definite measuring geometries. The results of mathematical modeling of the gamma-emitting transfer process allowed to estimate effective position of detection device for in situ measurements of specific activity radionuclides 134Cs and 137Cs in bottom sediments
ΠΠ°ΠΌΠΌΠ°-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ Π΄Π»Ρ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° Π°ΠΊΠ²Π°ΡΠΎΡΠΈΠΉ ΠΈ Π΄ΠΎΠ½Π½ΡΡ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ
In order to solve the problem of continuous or periodic monitoring of water areas affected by radioactive
contamination in the result of scheduled emissions in nuclear power plants or in the result of emergency situations in nuclear fuel cycle plants we need to develop measurement instruments with advanced mathematics
and program support to assess the level of radioactive contamination with required accuracy. The aim of theoretical research was to optimize detection device construction, estimate spectrometer metrological parameters in given measurement geometries, and determine effective position of detection device in the process of in situ measurements. This device consists of spectrometric scintillation probe packed into sealed container (detection device) based on NaI(T1) crystal of Γ 63 Γ 63 mm or Γ 63 Γ 160 mm size, cable reel with deep-sea cable and a tablet PC for data processing and displaying. The container withstands static hydraulic pressure up to 5 MPa and can be used for measurements at depths of 500 m maximum. Probe measures energy distribution of gamma-radiation with energy from 70 keV to 3000 keV. The implemented three-dimensional system for detection device position and orientation determination allows automatic operation of the device (without operator) for water areas or bottom sediment scanning. The spectrometer can output measurement results with three-dimensional geographical coordinates as index maps of distribution with necessary resolution and accuracy. Monte Carlo models of spectrometer and controlled objects are developed in order to determine the detector response functions to given radionuclides in given measurement geometries without use of expensive standard measures of activity. Multifunction gamma-spectrometer for in situ radiation monitoring of water areas and bottom sediments was developed and constructed. In the result of theoretical researches the response functions have been calculated in the form of theoretical spectra of monitored radionuclides in definite measuring geometries. The results of mathematical modeling of the gamma-emitting transfer process allowed to estimate effective position of detection device for in situ measurements of specific activity radionuclides 134Cs and 137Cs in bottom sediments