18 research outputs found

    Prediction Models Based on Soil Characteristics for Evaluation of the Accumulation Capacity of Nine Metals by Forage Sorghum Grown in Agricultural Soils Treated with Varying Amounts of Poultry Manure

    Get PDF
    Predictive models were generated to evaluate the degree to which nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were absorbed by the leaves, stems and roots of forage sorghum in growing media comprising soil admixed with poultry manure concentrations of 0, 10, 20, 30 and 40 g/kg. The data revealed that the greatest contents of the majority of the metals were evident in the roots rather than in the stems and leaves. A bioaccumulation factor (BAF)  1. Translocation factor values were < 1 for all metals with the exception of Co, Cr and Ni, which displayed values of 1.20, 1.67 and 1.35 for the leaves, and 1.12, 1.23 and 1.24, respectively, for the stems. The soil pH had a negative association with metal tissues in plant parts. A positive relationship was observed with respect to plant metal contents, electrical conductivity and organic matter quantity. The designed models exhibited a high standard of data precision; any variations between the predicted and experimentally observed contents for the nine metals in the three plant tissue components were nonsignificant. Thus, it was concluded that the presented predictive models constitute a pragmatic tool to establish the safety from risk to human well-being with respect to growing forage sorghum when cultivating media fortified with poultry manure.The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IFP-KKU-2020/3.Peer reviewe

    The value of duplex ultrasound versus contrast enhanced CT scan in the follow-up of endoluminally repaired abdominal aortic aneurysm : a blinded study

    No full text
    I-To compare aneurysm diameter measurements, and the detection of endoleaks in patients post endoluminal aortic aneurysm repair by colour duplex ultrasonography as compared to contrast enhanced CT scan as the gold standard. 2-To evaluate whether contrast enhanced ultrasound (levovist) improves the accuracy of colour duplex ultrasound for the detection of endoleaks as compared to CT

    Chronic Contained Abdominal Aortic Aneurysm Rupture Mimicking Vertebral Spondylodiscitis: A Case Report

    No full text

    Experimental Study on the Application of Cellulosic Biopolymer for Enhanced Oil Recovery in Carbonate Cores under Harsh Conditions

    No full text
    Polymer flooding is used to improve the viscosity of an injectant, thereby decreasing the mobility ratio and improving oil displacement efficiency in the reservoir. Thanks to their environmentally benign nature, natural polymers are receiving prodigious attention for enhanced oil recovery. Herein, the rheology and oil displacement properties of okra mucilage were investigated for its enhanced oil recovery potential at a high temperature and high pressure (HTHP) in carbonate cores. The cellulosic polysaccharide used in the study is composed of okra mucilage extracted from okra (Abelmoschus esculentus) via a hot water extraction process. The morphological property of okra mucilage was characterized with Fourier transform infrared (FTIR), while the thermal stability was investigated using a thermogravimetric analyzer (TGA). The rheological property of the okra mucilage was investigated for seawater salinity and high-temperature conditions using a TA rheometer. Finally, an oil displacement experiment of the okra mucilage was conducted in a high-temperature, high-pressure core flooding equipment. The TGA analysis of the biopolymer reveals that the polymeric solution was stable over a wide range of temperatures. The FTIR results depict that the mucilage is composed of galactose and rhamnose constituents, which are essentially found in polysaccharides. The polymer exhibited pseudoplastic behavior at varying shear rates. The viscosity of okra mucilage was slightly reduced when aged in seawater salinity and at a high temperature. Nonetheless, the cellulosic polysaccharide exemplified sufficiently good viscosity under high-temperature and high-salinity (HTHS) conditions. Finally, the oil recovery results from the carbonate core plug reveal that the okra mucilage recorded a 12.7% incremental oil recovery over waterflooding. The mechanism of its better displacement efficiency is elucidate

    Effect of Native Reservoir State and Oilfield Operations on Clay Mineral Surface Chemistry

    No full text
    An understanding of clay mineral surface chemistry is becoming critical as deeper levels of control of reservoir rock wettability via fluid–solid interactions are sought. Reservoir rock is composed of many minerals that contact the crude oil and control the wetting state of the rock. Clay minerals are one of the minerals present in reservoir rock, with a high surface area and cation exchange capacity. This is a first-of-its-kind study that presents zeta potential measurements and insights into the surface charge development process of clay minerals (chlorite, illite, kaolinite, and montmorillonite) in a native reservoir environment. Presented in this study as well is the effect of fluid salinity, composition, and oilfield operations on clay mineral surface charge development. Experimental results show that the surface charge of clay minerals is controlled by electrostatic and electrophilic interactions as well as the electrical double layer. Results from this study showed that clay minerals are negatively charged in formation brines as well as in deionized water, except in the case of chlorite, which is positively charged in formation water. In addition, a negative surface charge results from oilfield operations, except for operations at a high alkaline pH range of 10–13. Furthermore, a reduction in the concentrations of Na, Mg, Ca, and bicarbonate ions does not reverse the surface charge of the clay minerals; however, an increase in sulfate ion concentration does. Established in this study as well, is a good correlation between the zeta potential value of the clay minerals and contact angle, as an increase in fluid salinity results in a reduction of the negative charge magnitude and an increase in contact angle from 63 to 102 degree in the case of chlorite. Lastly, findings from this study provide vital information that would enhance the understanding of the role of clay minerals in the improvement of oil recovery

    Underground hydrogen storage:a critical assessment of fluid-fluid and fluid-rock interactions

    No full text
    Underground hydrogen storage (UHS) is the injection of hydrogen into the geologic porous medium for subsequent withdrawal and reuse during off-peak periods to contribute to the energy mix. Recently, UHS has gained prodigious attention due to its efficiency for the storage of hydrogen on a large scale. Nonetheless, an adequate understanding of the storage process is required for efficient and safe monitoring and to preserve reservoir integrity. Herein, the hydrodynamics of injected hydrogen (H2) gas, reservoir fluids, and reservoir rock systems are reviewed. Moreover, critical factors inherent to the reservoir (such as temperature, pressure, salinity, and rock mineralogy) that affect the UHS process are elucidated. Based on the available literature, the interplay of H2 solubility, interfacial tension, wettability, adsorption, and diffusion properties influence the geologic storage process. Overall, this review provides extensive insight into fluid-fluid and fluid-rock interactions and their effect on underground hydrogen storage process. Future research should focus on optimizing the process parameters to improve storage and withdrawal efficiency, thus guarantee energy security

    Calcite–Brine Interface and Its Implications in Oilfield Applications: Insights from Zeta Potential Experiments and Molecular Dynamics Simulations

    No full text
    Carbonate reservoirs are made up of predominantly calcite and dolomite minerals and hold significant hydrocarbon reserves globally. However, the production from carbonate reservoirs is limited due to their wettability, which controls the production and fluid distribution. To develop efficient strategies for producing from these formations, it is necessary to understand the underlining mechanisms of carbonate rock wettability. We believe that understanding the native state of the rock mineral in the reservoir environment and how oilfield operations affect the wetting state of minerals is critical to demystifying the change in carbonate rock wettability. Thus, this study extends the understanding of the surface charge development of calcite minerals and provides useful insight into the mineral’s surface charge development. Zeta potential measurements and molecular dynamics (MD) simulations of calcite in different fluids of varying composition and salinity were investigated. We have considered both the mixed brine (seawater and reservoir water) and individual salt brine (i.e., NaCl, MgCl2, and CaCl2). The results show that the calcite mineral surface charge is controlled by the composition and salinity of the surrounding fluids. Indeed, we found that monovalent ions have dominant contributions to the total calcite surface charge. The adsorptions of Na+ and Cl– shape the stern layer structure in the first two calcite hydration monolayers. We found that the interplay between the calcite surface affinity to the brine ions and the hydration-free energies are the two critical parameters shaping the final mineral surface charge. We believe that our study provides essential atomic insights into the calcite–brine interfaces and how ions interact with the surface to control the surface charge, which are vital to the quest for wettability control
    corecore