435 research outputs found

    Observation of D0ρ0γD^0\to \rho^0\gamma and search for CPCP violation in radiative charm decays

    Full text link
    We report the first observation of the radiative charm decay D0ρ0γD^0 \to \rho^0 \gamma and the first search for CPCP violation in decays D0ρ0γD^0 \to \rho^0 \gamma, ϕγ\phi\gamma, and K0γ\overline{K}{}^{*0} \gamma, using a data sample of 943 fb1^{-1} collected with the Belle detector at the KEKB asymmetric-energy e+ee^+e^- collider. The branching fraction is measured to be B(D0ρ0γ)=(1.77±0.30±0.07)×105\mathcal{B}(D^0 \to \rho^0 \gamma)=(1.77 \pm 0.30 \pm 0.07) \times 10^{-5}, where the first uncertainty is statistical and the second is systematic. The obtained CPCP asymmetries, ACP(D0ρ0γ)=+0.056±0.152±0.006\mathcal{A}_{CP}(D^0 \to \rho^0 \gamma)=+0.056 \pm 0.152 \pm 0.006, ACP(D0ϕγ)=0.094±0.066±0.001\mathcal{A}_{CP}(D^0 \to \phi \gamma)=-0.094 \pm 0.066 \pm 0.001, and ACP(D0K0γ)=0.003±0.020±0.000\mathcal{A}_{CP}(D^0 \to \overline{K}{}^{*0} \gamma)=-0.003 \pm 0.020 \pm 0.000, are consistent with no CPCP violation. We also present an improved measurement of the branching fractions B(D0ϕγ)=(2.76±0.19±0.10)×105\mathcal{B}(D^0 \to \phi \gamma)=(2.76 \pm 0.19 \pm 0.10) \times 10^{-5} and B(D0K0γ)=(4.66±0.21±0.21)×104\mathcal{B}(D^0 \to \overline{K}{}^{*0} \gamma)=(4.66 \pm 0.21 \pm 0.21) \times 10^{-4}

    Measurement of branching fraction and direct CPCP asymmetry in charmless B+K+Kπ+B^+ \to K^+K^- \pi^+ decays at Belle

    Full text link
    We report a study of the charmless hadronic decay of the charged BB meson to the three-body final state K+Kπ+K^+ K^- \pi^+. The results are based on a data sample that contains 772×106772\times10^6 BBˉB \bar{B} pairs collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^+ e^- collider. The measured inclusive branching fraction and the direct CPCP asymmetry are (5.38±0.40±0.35)×106(5.38\pm0.40\pm0.35)\times 10^{-6} and 0.170±0.073±0.017-0.170\pm0.073\pm0.017, respectively, where the first uncertainties are statistical and the second are systematic. The K+KK^{+}K^{-} invariant mass distribution of the signal candidates shows an excess in the region below 1.51.5 GeV/c2c^2, which is consistent with the previous studies from BaBar and LHCb. In addition, strong evidence of a large direct CPCP asymmetry is found in the K+KK^{+}K^{-} low-invariant-mass region.Comment: 7 pages, 3 figure

    Measurement of the CKM Matrix Element Vcb|V_{cb}| from B0D+νB^{0} \to D^{*-} \ell^+ \nu_\ell at Belle

    Full text link
    We present a new measurement of the CKM matrix element Vcb|V_{cb}| from B0D+νB^{0} \to D^{*-} \ell^+ \nu_\ell decays, reconstructed with the full Belle data set of 711fb1711 \, \rm fb^{-1} integrated luminosity. Two form factor parameterizations, originally conceived by the Caprini-Lellouch-Neubert (CLN) and the Boyd, Grinstein and Lebed (BGL) groups, are used to extract the product F(1)ηEWVcb\mathcal{F}(1)\eta_{\rm EW}|V_{cb}| and the decay form factors, where F(1)\mathcal{F}(1) is the normalization factor and ηEW\eta_{\rm EW} is a small electroweak correction. In the CLN parameterization we find F(1)ηEWVcb=(35.06±0.15±0.56)×103\mathcal{F}(1)\eta_{\rm EW}|V_{cb}| = (35.06 \pm 0.15 \pm 0.56) \times 10^{-3}, ρ2=1.106±0.031±0.007\rho^{2}=1.106 \pm 0.031 \pm 0.007, R1(1)=1.229±0.028±0.009R_{1}(1)=1.229 \pm 0.028 \pm 0.009, R2(1)=0.852±0.021±0.006R_{2}(1)=0.852 \pm 0.021 \pm 0.006. For the BGL parameterization we obtain F(1)ηEWVcb=(34.93±0.23±0.59)×103\mathcal{F}(1)\eta_{\rm EW}|V_{cb}|= (34.93 \pm 0.23 \pm 0.59)\times 10^{-3}, which is consistent with the World Average when correcting for F(1)ηEW\mathcal{F}(1)\eta_{\rm EW}. The branching fraction of B0D+νB^{0} \to D^{*-} \ell^+ \nu_\ell is measured to be B(B0D+ν)=(4.90±0.02±0.16)%\mathcal{B}(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell}) = (4.90 \pm 0.02 \pm 0.16)\%. We also present a new test of lepton flavor universality violation in semileptonic BB decays, B(B0De+ν)B(B0Dμ+ν)=1.01±0.01±0.03 \frac{{\cal B }(B^0 \to D^{*-} e^+ \nu)}{{\cal B }(B^0 \to D^{*-} \mu^+ \nu)} = 1.01 \pm 0.01 \pm 0.03~. The errors correspond to the statistical and systematic uncertainties respectively. This is the most precise measurement of F(1)ηEWVcb\mathcal{F}(1)\eta_{\rm EW}|V_{cb}| and form factors to date and the first experimental study of the BGL form factor parameterization in an experimental measurement

    Measurement of eta_c(1S), eta_c(2S) and non-resonant eta' pi+ pi- production via two-photon collisions

    Full text link
    We report the measurement of gamma gamma to eta_c(1S), eta_c(2S) to eta' pi+ pi- with eta' decays to gamma rho and eta pi+ pi- using 941 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The eta_c(1S) mass and width are measured to be M = [2984.6\pm0.7 (stat.)\pm2.2 (syst.)] MeV/c^{2} and \Gamma = [30.8^{+2.3}_{-2.2}~(stat.) \pm 2.5~(syst.)] MeV, respectively. First observation of eta_c(2S) to eta' pi+ pi- with a significance of 5.5sigma including systematic error is obtained, and the eta_c(2S) mass is measured to be M = [3635.1\pm3.7~(stat.)\pm2.9~(syst.)] MeV/c^{2}. The products of the two-photon decay width and branching fraction (B) of decays to eta'pi+ pi- are determined to be \Gamma_{gamma gamma}B = [65.4\pm2.6~(stat.)\pm6.9~(syst.)] eV for eta_c(1S) and [5.6^{+1.2}_{-1.1}~(stat.)\pm1.1~(syst.)] eV for eta_c(2S). A new decay mode for the eta_c(1S) to eta'f_0(2080) with f_0(2080) to pi+ pi- is observed with a statistical significance of 20sigma. The f_0(2080) mass and width are determined to be M = [2083^{+63}_{-66}~(stat.)\pm 32~(syst.)] MeV/c^{2} and \Gamma = [178^{+60}_{-178}~(stat.) \pm 55~(syst.)] MeV. The cross sections for gamma gamma to eta' pi+ pi- and eta'f_{2}(1270) are measured for the first time.Comment: 19 pages, 14 figure

    Search for Bhννˉ\boldsymbol{B\to h\nu\bar{\nu}} decays with semileptonic tagging at Belle

    Full text link
    We present the results of a search for the rare decays BhννB\to h\nu\overline{\nu}, where hh stands for K+,KS0,K+,K0,π+,π0,ρ+K^+,\:K^0_{\mathrm{S}},\:K^{\ast +},\:K^{\ast 0},\:\pi^+,\:\pi^0,\:\rho^+ and ρ0\rho^{0}. The results are obtained with 772×106772\times10^{6} BBB\overline{B} pairs collected with the Belle detector at the KEKB e+ee^+ e^- collider. We reconstruct one BB meson in a semileptonic decay and require a single hh meson but nothing else on the signal side. We observe no significant signal and set upper limits on the branching fractions. The limits set on the BKS0ννB\to K^0_{\mathrm{S}}\nu\overline{\nu}, B0K0ννB^0\to K^{*0}\nu\overline{\nu}, Bπ+ννB\to \pi^+\nu\overline{\nu}, B0π0ννB^0\to\pi^0\nu\overline{\nu}, B+ρ+ννB^+\to\rho^+\nu\overline{\nu}, and B0ρ0ννB^0\to\rho^0\nu\overline{\nu} channels are the world's most stringent.Comment: Submitted to PR

    Search for CPCP violation in the D+π+π0D^{+}\to\pi^{+}\pi^{0} decay at Belle

    Get PDF
    We search for CPCP violation in the charged charm meson decay D+π+π0D^{+}\to\pi^{+}\pi^{0}, based on a data sample corresponding to an integrated luminosity of 921 fb1\rm 921~fb^{-1} collected by the Belle experiment at the KEKB e+ee^{+}e^{-} asymmetric-energy collider. The measured CPCP violating asymmetry is [+2.31±1.24(stat)±0.23(syst)]%[+2.31\pm1.24({\rm stat})\pm0.23({\rm syst})]\%, which is consistent with the standard model prediction and has a significantly improved precision compared to previous results.Comment: 8 pages, 3 figure

    Search for CPCP Violation and Measurement of the Branching Fraction in the Decay D0KS0KS0D^{0} \to K^0_S K^0_S

    Full text link
    We report a study of the decay D0KS0KS0D^0 \to K^0_S K^0_S using 921~fb1^{-1} of data collected at or near the Υ(4S)\Upsilon(4S) and Υ(5S)\Upsilon(5S) resonances with the Belle detector at the KEKB asymmetric energy e+ee^+e^- collider. The measured time-integrated CPCP asymmetry is ACP(D0KS0KS0)=(0.02±1.53±0.02±0.17)% A_{CP}(D^0 \to K^0_S K^0_S) = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17) \%, and the branching fraction is B(D0KS0KS0)\mathcal{B} (D^{0}\rightarrow K_{S}^{0}K_{S}^{0}) = (1.321 ±\pm 0.023 ±\pm 0.036 ±\pm 0.044) ×\times 104^{-4}, where the first uncertainty is statistical, the second is systematic, and the third is due to the normalization mode (D0KS0π0D^0 \to K_S^0 \pi^0). These results are significantly more precise than previous measurements available for this mode. The ACPA_{CP} measurement is consistent with the standard model expectation.Comment: 7 pages,1 figure, Submitted to PR

    Measurements of the absolute branching fractions of B+XccˉK+B^{+} \to X_{c\bar{c}} K^{+} and B+Dˉ()0π+B^{+} \to \bar{D}^{(\ast) 0} \pi^{+} at Belle

    Get PDF
    We present the measurement of the absolute branching fractions of B+XccˉK+B^{+} \to X_{c\bar{c}} K^{+} and B+Dˉ()0π+B^{+} \to \bar{D}^{(\ast) 0} \pi^{+} decays, using a data sample of 772×106772\times10^{6} BBˉB\bar{B} pairs collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. Here, XccˉX_{c\bar{c}} denotes ηc\eta_{c}, J/ψJ/\psi, χc0\chi_{c0}, χc1\chi_{c1}, ηc(2S)\eta_{c}(2S), ψ(2S)\psi(2S), ψ(3770)\psi(3770), X(3872)X(3872), and X(3915)X(3915). We do not observe significant signals for X(3872)X(3872) nor X(3915)X(3915), and set the 90%\% confidence level upper limits: B(B+X(3872)K+)<2.7×104{\cal B}(B^{+} \to X(3872) K^{+} )<2.7 \times 10^{-4} and B(B+X(3915)K+)<2.9×104{\cal B}(B^{+} \to X(3915) K^{+} )<2.9 \times 10^{-4}. These represent the most stringent upper limit for B(B+X(3872)K+){\cal B}(B^{+} \to X(3872) K^{+} ) to date and the first measurement for B(B+X(3915)K+){\cal B}(B^{+} \to X(3915) K^{+} ). The measured branching fractions for ηc\eta_{c} and ηc(2S)\eta_{c}(2S) are the most precise to date: B(B+ηcK+)=(12.3±0.8±0.7)×104{\cal B}(B^{+} \to \eta_{c} K^{+} )=(12.3\pm0.8\pm0.7) \times 10^{-4} and B(B+ηc(2S)K+)=(4.9±1.1±0.3)×104{\cal B}(B^{+} \to \eta_{c}(2S)K^{+}) =(4.9\pm1.1\pm0.3) \times 10^{-4} , where the first and second uncertainties are statistical and systematic, respectively.Comment: 10 pages, 3 figure
    corecore