22 research outputs found

    Packaging technology enabling flexible optical interconnections

    Get PDF
    This paper reports on the latest trends and results on the integration of optical and opto-electronic devices and interconnections inside flexible carrier materials. Electrical circuits on flexible substrates are a very fast growing segment in electronics, but opto-electronics and optics should be able to follow these upcoming trends. This paper presents the back-thinning and packaging of single opto-electronic devices resulting in highly flexible and reliable packages. Optical waveguides and optical out-of-plane coupling structures are integrated inside the same layer stack, resulting in complete VCSEL-to-PD links with low total optical losses and high resistance to heat cycling and moisture exposure

    Low-cost fully integrated fiber Bragg grating interrogation system

    Get PDF
    Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach

    Flexible optical chemical sensor platform for BTX

    Get PDF
    An in-plane flexible sensor platform for BTX detection was developed using low-cost patterning techniques and foil-based optical components. The platform was produced by a combination of laser patterning, inkjet printing and capillary filling. Key optical components such as lightguides, opticalcladding layers and metallic interconnections were realized on low cost substrates such as paper and PET. The sensing mechanism is based on the change in fluorescence spectra of a reporter dye, supported over a porous matrix. Detection limits down to 1 ppm for benzene, toluene and xylene have been measured. Response times down to a few seconds were observed for different gas concentrations

    Ultra small integrated optical fiber sensing system

    Get PDF
    This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 µm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets

    Fluid sensing strategies adopted in photonic devices: a review

    No full text
    Fluid sensing techniques have been proposed by many research groups over the decades. These span a wide range of applications, which include industrial, medical and engineering fields. This review article focuses on the adopted sensing mechanisms in photonic devices for detecting fluids (gas/dissolved gas/liquid/electrolyte). A comparison between different technologies is made taking into account the performance indicators. The advantages and limitations of each of the techniques are highlighted, which will pave the way for future research and development in this area

    Alcohol vapor sensor based on fluorescent dye-doped optical waveguides

    No full text
    This paper presents an alcohol vapor sensor realized using stretchable optical waveguides doped with commercially available fluorescent dyes. The fabrication technology is based on a cost-efficient replication method, employing polydimethylsiloxane materials mixed with the dye Nile red. Upon introduction of ethanol vapors, the fluorescent emission was found to have a wavelength shift of similar to 20 nm with a response time of similar to 10 s. Observing the fluorescence intensity of the shifted emission spectrum in a periodically varying environment inside a gas-sensing setup showed a respective variation with introduction of ethanol vapor. The intensity variation also showed the reversibility of the sensor. The sensing platform is found to hold much promise for further integration and multiplexing

    Flexible silicon nitride photonic integrated circuit embedded in polymer handle

    No full text
    In this paper, we present a hybrid process to make a flexible photonic circuit. The photonic circuit is fabricated on a Silicon substrate with PECVD Silicon Nitride (SiN) as a waveguide layer on an oxide layer. The SiN waveguide circuit is fabricated using conventional lithography and dry etching followed by Si substrate thinned down to 10micrometer. The thin-film photonic circuit integrity after wafer-thinning and layer transfer is characterized by the waveguide performance, grating coupler efficiency and ring resonator performance. We observe no degradation in device and circuit performance. We present detailed process flow, SiN-to-PDMS embedding process and detailed device characterization
    corecore