1,538 research outputs found

    First-Principles Study on Electron Conduction in Sodium Nanowire

    Full text link
    We present detailed first-principles calculations of the electron-conduction properties of a three-sodium-atom nanowire suspended between semi-infinite crystalline Na(001) electrodes during its elongation. Our investigations reveal that the conductance is ~1 G0 before the nanowire breaks and only one channel with the characteristic of the 3s3s orbital of the center atom in the nanowire contributes to the electron conduction. Moreover, the channel fully opens around the Fermi level, and the behavior of the channel-current density is insensitive to the structural deformation of the nanowire. These results verify that the conductance trace as a function of the electrode spacing exhibits a flat plateau at ~1 G0 during elongation.Comment: 8 pages, 5 figure

    Modifying the Sum Over Topological Sectors and Constraints on Supergravity

    Full text link
    The standard lore about the sum over topological sectors in quantum field theory is that locality and cluster decomposition uniquely determine the sum over such sectors, thus leading to the usual theta-vacua. We show that without changing the local degrees of freedom, a theory can be modified such that the sum over instantons should be restricted; e.g. one should include only instanton numbers which are divisible by some integer p. This conclusion about the configuration space of quantum field theory allows us to carefully reconsider the quantization of parameters in supergravity. In particular, we show that FI-terms and nontrivial Kahler forms are quantized. This analysis also leads to a new derivation of recent results about linearized supergravity.Comment: 17 pages, minor change

    Nanomechanical sensors: Measuring a response in blood

    Get PDF
    Nanomechanical cantilevers can determine the concentration of active drugs in human serum

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment

    The phase diagram of Yang-Mills theory with a compact extra dimension

    Get PDF
    We present a non-perturbative study of the phase diagram of SU(2) Yang-Mills theory in a five-dimensional spacetime with a compact extra dimension. The non-renormalizable theory is regularized on an anisotropic lattice and investigated through numerical simulations in a regime characterized by a hierarchy between the scale of low-energy physics, the inverse compactification radius, and the cutoff scale. We map out the structure of the phase diagram and the pattern of lines corresponding to fixed values of the ratio between the mass of the fifth component of the gauge field and the non-perturbative mass gap of the four-dimensional modes. We discuss different limits of the model, and comment on the implications of our findings.Comment: 17 pages, 9 figure

    Trends in healthcare utilization among older Americans with colorectal cancer: A retrospective database analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analyses of utilization trends (cost drivers) allow us to understand changes in colorectal cancer (CRC) costs over time, better predict future costs, identify changes in the use of specific types of care (eg, hospice), and provide inputs for cost-effectiveness models. This retrospective cohort study evaluated healthcare resource use among US Medicare beneficiaries diagnosed with CRC between 1992 and 2002.</p> <p>Methods</p> <p>Cohorts included patients aged 66+ newly diagnosed with adenocarcinoma of the colon (n = 52,371) or rectum (n = 18,619) between 1992 and 2002 and matched patients from the general Medicare population, followed until death or December 31, 2005. Demographic and clinical characteristics were evaluated by cancer subsite. Resource use, including the percentage that used each type of resource, number of hospitalizations, and number of hospital and skilled nursing facility days, was evaluated by stage and subsite. The number of office, outpatient, and inpatient visits per person-year was calculated for each cohort, and was described by year of service, subsite, and treatment phase. Hospice use rates in the last year of life were calculated by year of service, stage, and subsite for CRC patients who died of CRC.</p> <p>Results</p> <p>CRC patients (mean age: 77.3 years; 44.9% male) used more resources than controls in every category (<it>P </it>< .001), with the largest differences seen in hospital days and home health use. Most resource use (except hospice) remained relatively steady over time. The initial phase was the most resource intense in terms of office and outpatient visits. Hospice use among patients who died of CRC increased from 20.0% in 1992 to 70.5% in 2004, and age-related differences appear to have evened out in later years.</p> <p>Conclusion</p> <p>Use of hospice care among CRC decedents increased substantially over the study period, while other resource use remained generally steady. Our findings may be useful for understanding CRC cost drivers, tracking trends, and forecasting resource needs for CRC patients in the future.</p

    Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Get PDF
    BACKGROUND: Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. METHODS: We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. RESULTS: The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. CONCLUSIONS: The heat transport system model of the skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue

    Very Cold Gas and Dark Matter

    Get PDF
    We have recently proposed a new candidate for baryonic dark matter: very cold molecular gas, in near-isothermal equilibrium with the cosmic background radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed in a fractal structure, resembling the hierarchical structure of the detected interstellar medium. We present some perspectives of detecting this very cold gas, either directly or indirectly. The H2_2 molecule has an "ultrafine" structure, due to the interaction between the rotation-induced magnetic moment and the nuclear spins. But the lines fall in the km domain, and are very weak. The best opportunity might be the UV absorption of H2_2 in front of quasars. The unexpected cold dust component, revealed by the COBE/FIRAS submillimetric results, could also be due to this very cold H2_2 gas, through collision-induced radiation, or solid H2_2 grains or snowflakes. The γ\gamma-ray distribution, much more radially extended than the supernovae at the origin of cosmic rays acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht
    corecore