2,198 research outputs found

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    Bat activity correlated with migratory insect bioflows in the Pyrenees

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: The data are provided in electronic supplementary material [67].High altitude mountain passes in the Pyrenees are known to be important migratory hotspots for autumn migrating insects originating from large swathes of northern Europe. In the Pyrenees, prior research has focused on diurnal migratory insects. In this study, we investigate the nocturnal component of the migratory assemblage and ask if this transient food source is also used by bat species. Three seasons of insect trapping revealed 66 species of four different orders, 90% of which were Noctuid moths, including the destructive pest Helicoverpa armigera, otherwise known as the cotton bollworm. Acoustic bat detectors revealed that high activity of Nyctalus spp. and Tadarida teniotis bats were closely synchronized with the arrival of the migratory moths, suggesting this food source is important for both resident and migratory bats to build or maintain energy reserves. Bats of the Nyctalus spp. are likely migrating through the study site using fly-and-forage strategies or stopping over in the area, while resident T. teniotis may be exploiting the abundant food source to build fat stores for hibernation. This study shows that nocturnal migratory insects are abundant in the Pyrenees during autumn and interact during migration, not only with their co-migrant bats but also with resident bat species.Royal Societ

    Inhalation characteristics of asthma patients, COPD patients and healthy volunteers with the Spiromax® and Turbuhaler® devices: a randomised, cross-over study.

    Get PDF
    BACKGROUND: Spiromax® is a novel dry-powder inhaler containing formulations of budesonide plus formoterol (BF). The device is intended to provide dose equivalence with enhanced user-friendliness compared to BF Turbuhaler® in asthma and chronic obstructive pulmonary disease (COPD). The present study was performed to compare inhalation parameters with empty versions of the two devices, and to investigate the effects of enhanced training designed to encourage faster inhalation. METHODS: This randomised, open-label, cross-over study included children with asthma (n = 23), adolescents with asthma (n = 27), adults with asthma (n = 50), adults with COPD (n = 50) and healthy adult volunteers (n = 50). Inhalation manoeuvres were recorded with each device after training with the patient information leaflet (PIL) and after enhanced training using an In-Check Dial device. RESULTS: After PIL training, peak inspiratory flow (PIF), maximum change in pressure (∆P) and the inhalation volume (IV) were significantly higher with Spiromax than with the Turbuhaler device (p values were at least <0.05 in all patient groups). After enhanced training, numerically or significantly higher values for PIF, ∆P, IV and acceleration remained with Spiromax versus Turbuhaler, except for ∆P in COPD patients. After PIL training, one adult asthma patient and one COPD patient inhaled <30 L/min through the Spiromax compared to one adult asthma patient and five COPD patients with the Turbuhaler. All patients achieved PIF values of at least 30 L/min after enhanced training. CONCLUSIONS: The two inhalers have similar resistance so inhalation flows and pressure changes would be expected to be similar. The higher flow-related values noted for Spiromax versus Turbuhaler after PIL training suggest that Spiromax might have human factor advantages in real-world use. After enhanced training, the flow-related differences between devices persisted; increased flow rates were achieved with both devices, and all patients achieved the minimal flow required for adequate drug delivery. Enhanced training could be useful, especially in COPD patients

    Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    Get PDF
    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs

    Hoverflies use a time-compensated sun compass to orientate during autumn migration

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: All data are provided as electronic supplementary material [59].The sun is the most reliable celestial cue for orientation available to daytime migrants. It is widely assumed that diurnal migratory insects use a ‘time-compensated sun compass’ to adjust for the changing position of the sun throughout the day, as demonstrated in some butterfly species. The mechanisms used by other groups of diurnal insect migrants remain to be elucidated. Migratory species of hoverflies (Diptera: Syrphidae) are one of the most abundant and beneficial groups of diurnal migrants, providing multiple ecosystem services and undergoing directed seasonal movements throughout much of the temperate zone. To identify the hoverfly navigational strategy, a flight simulator was used to measure orientation responses of the hoverflies Scaeva pyrastri and Scaeva selenitica to celestial cues during their autumn migration. Hoverflies oriented southwards when they could see the sun and shifted this orientation westward following a 6 h advance of their circadian clocks. Our results demonstrate the use of a time-compensated sun compass as the primary navigational mechanism, consistent with field observations that hoverfly migration occurs predominately under clear and sunny conditions.Royal SocietyNatural Environment Research Council (NERC)European Union Horizon 2020American Airforce Research Laboratory (AFRL)Bristol Centre for Agricultural Innovation (BCAI

    High mortality of beetle migrants along the Eastern Mediterranean Flyway

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the supplementary material of this article.Migration is costly in terms of increased energy expenditure and exposure to risks encountered en route. These factors can lead to a higher mortality among migrants compared with more sedentary life history stages. Insect migrants are incredibly numerous, but as they are less conspicuous than vertebrate migrants and as migration often occurs at high altitude and over a broad front, it can be difficult to study migration-related mortality. A major source of information on migration-related mortality comes from cadavers found on the strandline following unsuccessful sea crossings. Here, we analyse strandline mortality following a 100 km crossing of open ocean along the Eastern Mediterranean Flyway from the Middle East mainland to the island of Cyprus by tens of millions of insects. All strandline recordings were of two species of beetles, the seven-spot ladybird Coccinella septempunctata and the carabid beetle Calosoma olivieri, whereas only nine individuals of C. septempunctata were caught successfully arriving with the rest of the insect assemblage over the ocean. Major strandings were associated with easterly winds, suggesting origins from the Middle East mainland, with the individuals documented as extremely weak and unable to fly or dead. Our results suggest that beetles are weaker migrants than other members of the migratory insect assemblage, with the sea crossing too far for the great majority to fly, leading to high mortality. The impact of this high mortality on the marine ecosystems is discussed.Royal Societ

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment
    corecore