359 research outputs found

    Digital evidence search kit

    Get PDF
    With the rapid development of electronic commerce and Internet technology, cyber crimes have become more and more common. There is a great need for automated software systems that can assist law enforcement agencies in cyber crime evidence collection. This paper describes a cyber crime evidence collection tool called DESK (Digital Evidence Search Kit), which is the product of several years of cumulative efforts of our Center together with the Hong Kong Police Force and several other law enforcement agencies of the Hong Kong Special Administrative Region. We will use DESK to illustrate some of the desirable features of an effective cyber crime evidence collection tool. © 2005 IEEE.published_or_final_versio

    Protecting digital legal professional privilege LPP data

    Get PDF
    The Best Paper AwardTo enable free communication between legal advisor and his client for proper functioning of the legal system, certain documents, known as Legal professional privilege (LPP) documents, can be excluded as evidence for prosecution. In physical world, protection of LPP information is well addressed and proper procedure for handling LPP articles has been established. However, there does not exist a forensically sound procedure for protecting 'digital' LPP information. In this paper, we try to address this important, but rarely addressed, issue. We point out the difficulties of handling digital LPP data and discuss the shortcomings of the current practices, then we propose a feasible procedure for solving this problem. © 2008 IEEE.published_or_final_versionThe 3rd International Workshop on Systematic Approaches to Digital Forensic Engineering (IEEE/SADFE 2008), Oakland, CA., 22 May 2008. In Proceedings of the 3rd SADFE, 2008, p. 91-10

    Separable and anonymous identity-based key issuing

    Get PDF
    In identity-based (ID-based) cryptosystems, a local registration authority (LRA) is responsible for authentication of users while the key generation center (KGC) is responsible for computing and sending the private keys to users and therefore, a secure channel is required. For privacy-oriented applications, it is important to keep in secret whether the private key corresponding to a certain identity has been requested. All of the existing ID-based key issuing schemes have not addressed this anonymity issue. Besides, the separation of duties of LRA and KGC has not been discussed as well. We propose a novel separable and anonymous ID-based key issuing scheme without secure channel. Our protocol supports the separation of duties between LRA and KGC. The private key computed by the KGC can be sent to the user in an encrypted form such that only the legitimate key requester authenticated by LRA can decrypt it, and any eavesdropper cannot know the identity corresponding to the secret key. © 2005 IEEE.published_or_final_versio

    ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen

    Get PDF
    The International Society for Rock Mechanics has so far developed two standard methods for the determination of static fracture toughness of rock. They used three different core based specimens and tests were to be performed on a typical laboratory compression or tension load frame. Another method to determine the mode I fracture toughness of rock using semicircular bend specimen is herein presented. The specimen is semicircular in shape and made from typical cores taken from the rock with any relative material directions noted. The specimens are tested in three-point bending using a laboratory compression test instrument. The failure load along with its dimensions is used to determine the fracture toughness. Most sedimentary rocks which are layered in structure may exhibit fracture properties that depend on the orientation and therefore measurements in more than one material direction may be necessary. The fracture toughness measurements are expected to yield a size-independent material property if certain minimum specimen size requirements are satisfied

    Evaluation of chemical strategies for improving the stability and oral toxicity of insecticidal peptides

    Full text link
    © 2018 by the authors. Spider venoms are a rich source of insecticidal peptide toxins. Their development as bioinsecticides has, however, been hampered due to concerns about potential lack of stability and oral bioactivity. We therefore systematically evaluated several synthetic strategies to increase the stability and oral potency of the potent insecticidal spider-venom peptide !-HXTX-Hv1a (Hv1a). Selective chemical replacement of disulfide bridges with diselenide bonds and N- to C-terminal cyclization were anticipated to improve Hv1a resistance to proteolytic digestion, and thereby its activity when delivered orally. We found that native Hv1a is orally active in blowflies, but 91-fold less potent than when administered by injection. Introduction of a single diselenide bond had no effect on the susceptibility to scrambling or the oral activity of Hv1a. N- to C-terminal cyclization of the peptide backbone did not significantly improve the potency of Hv1a when injected into blowflies and it led to a significant decrease in oral activity. We show that this is likely due to a dramatically reduced rate of translocation of cyclic Hv1a across the insect midgut, highlighting the importance of testing bioavailability in addition to toxin stability

    Evaluation of Mode I Fracture Toughness Assisted by the Numerical Determination of K-Resistance

    Get PDF
    The fracture toughness of a rock often varies depending on the specimen shape and the loading type used to measure it. To investigate the mode I fracture toughness using semi-circular bend (SCB) specimens, we experimentally studied the fracture toughness using SCB and chevron bend (CB) specimens, the latter being one of the specimens used extensively as an International Society for Rock Mechanics (ISRM) suggested method, for comparison. The mode I fracture toughness measured using SCB specimens is lower than both the level I and level II fracture toughness values measured using CB specimens. A numerical study based on discontinuum mechanics was conducted using a two-dimensional distinct element method (DEM) for evaluating crack propagation in the SCB specimen during loading. The numerical results indicate subcritical crack growth as well as sudden crack propagation when the load reaches the maximum. A K-resistance curve is drawn using the crack extension and the load at the point of evaluation. The fracture toughness evaluated by the K-resistance curve is in agreement with the level II fracture toughness measured using CB specimens. Therefore, the SCB specimen yields an improved value for fracture toughness when the increase of K-resistance with stable crack propagation is considered

    Small Horizons

    Get PDF
    All near horizon geometries of supersymmetric black holes in a N=2, D=5 higher-derivative supergravity theory are classified. Depending on the choice of near-horizon data we find that either there are no regular horizons, or horizons exist and the spatial cross-sections of the event horizons are conformal to a squashed or round S^3, S^1 * S^2, or T^3. If the conformal factor is constant then the solutions are maximally supersymmetric. If the conformal factor is not constant, we find that it satisfies a non-linear vortex equation, and the horizon may admit scalar hair.Comment: 21 pages, latex. Typos corrected and reference adde

    Intrusion detection routers: Design, implementation and evaluation using an experimental testbed

    Get PDF
    In this paper, we present the design, the implementation details, and the evaluation results of an intrusion detection and defense system for distributed denial-of-service (DDoS) attack. The evaluation is conducted using an experimental testbed. The system, known as intrusion detection router (IDR), is deployed on network routers to perform online detection on any DDoS attack event, and then react with defense mechanisms to mitigate the attack. The testbed is built up by a cluster of sufficient number of Linux machines to mimic a portion of the Internet. Using the testbed, we conduct real experiments to evaluate the IDR system and demonstrate that IDR is effective in protecting the network from various DDoS attacks. © 2006 IEEE.published_or_final_versio

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
    • …
    corecore