66 research outputs found

    HIV-1 DNA Is Maintained in Antigen-Specific CD4+ T Cell Subsets in Patients on Long-Term Antiretroviral Therapy Regardless of Recurrent Antigen Exposure

    Full text link
    Memory CD4+ T cells (mCD4s) containing integrated HIV DNA are considered the main barrier to a cure for HIV infection. Here, we analyzed HIV DNA reservoirs in antigen-specific subsets of mCDs to delineate the mechanisms by which HIV reservoirs persist during antiretroviral therapy (ART). HIV Gag, cytomegalovirus (CMV), and tetanus toxoid (TT)-specific mCD4s were isolated from peripheral blood samples obtained from 11 individual subjects, 2-11 years after commencing ART. Antigen-specific mCD4s were identified by the sensitive OX40 assay and purified by cell sorting. Total HIV DNA levels were quantified by real-time PCR, and clonal viral sequences generated from mCD4 subsets and pre-ART plasma samples. Quantitative results and sequence analysis were restricted to five and three study participants, respectively, which was likely due to the low frequency of the antigen-specific mCD4s and relatively low HIV DNA proviral loads. Median HIV Gag-, CMV-, and TT-specific mCD4s were 0.61%, 2.46%, and 0.78% of total mCD4s, and they contained a median of 2.50, 2.38, and 2.55 log 10 copies of HIV DNA per 10 6 cells, respectively. HIV DNA sequences were derived from antigen-specific mCD4s clustered with sequences derived from pre-ART plasma samples. There was a trend toward increased viral diversity in clonal viral sequences derived from CMV-specific mCD4s relative to TT-specific mCD4s. Despite limitations, this study provides direct evidence that HIV reservoirs persist in memory CD4+ T cell subsets maintained by homeostatic proliferation (TT) and adds to growing evidence against viral evolution during ART. Similar future studies require techniques that sample diverse HIV reservoirs and with improved sensitivity

    Quantification of Residual Germinal Center Activity and HIV-1 DNA and RNA Levels Using Fine Needle Biopsies of Lymph Nodes during Antiretroviral Therapy

    Full text link
    HIV-1 reservoirs are most often studied in peripheral blood (PB), but not all lymphocytes recirculate, particularly T follicular helper (Tfh) CD4+ T cells, as well as germinal center (GC) B cells, in lymph nodes (LNs). Ultrasound-guided fine needle biopsies (FNBs) from inguinal LNs and PB samples were obtained from 10 healthy controls (HCs) and 21 HIV-1-infected subjects [11 antiretroviral therapy (ART) naive and 10 on ART]. Tfh cells and GC B cells were enumerated by flow cytometry. HIV-1 DNA and cell-associated (CA) RNA levels in LNs and PB were quantified by real-time polymerase chain reaction. FNBs were obtained without adverse events. Tfh cells and GC B cells were highly elevated in ART-naive subjects, with a median GC B cell count >300-fold higher than HCs, but also remained higher in 4 out of the 10 subjects on ART. GC B cell counts and Tfh cell counts were highly correlated with each other, and also with activated T cells in LNs but not in blood. Levels of HIV-1 DNA and CA RNA viral burden in highly purified CD4+ T cells from FNBs were significantly elevated compared with those in CD4+ T cells from PB in the ART-naive group, but only trended toward an increase in the ART patients. FNBs enabled minimally invasive access to, and parallel measurement of residual activated T and B cells and viral burden within LNs in HIV-1-infected patients. These FNBs revealed significant GC activity that was not apparent from corresponding PB samples

    Interleukin 6 Is a Stronger Predictor of Clinical Events Than High-Sensitivity C-Reactive Protein or D-Dimer During HIV Infection

    Get PDF
    BACKGROUND: Interleukin 6 (IL-6), high-sensitivity C-reactive protein (hsCRP), and D-dimer levels are linked to adverse outcomes in human immunodeficiency virus (HIV) infection, but the strength of their associations with different clinical end points warrants investigation. METHODS: Participants receiving standard of care in 2 HIV trials with measured biomarker levels were followed to ascertain all-cause death, non–AIDS-related death, AIDS, cardiovascular disease (CVD), and non–AIDS-defining malignancies. Hazard ratios (HRs) and 95% confidence intervals (CIs) of each end point for quartiles and log2-transformed IL-6, hsCRP, and D-dimer levels were calculated using Cox models. Marginal models modelling multiple events tested for equal effects of biomarker levels on different end points. RESULTS: Among 4304 participants, there were 157 all-cause deaths, 117 non–AIDS-related deaths, 101 AIDS cases, 121 CVD cases, and 99 non–AIDS-defining malignancies. IL-6 was more strongly associated with most end points, compared with hsCRP. IL-6 appeared to be a stronger predictor than D-dimer for CVD and non–AIDS-defining malignancies, but 95% CIs overlapped. Independent associations of IL-6 were stronger for non–AIDS-related death (HR, 1.71; 95% CI, 1.43–2.04) and all-cause death (HR, 1.56; 95% CI, 1.33–1.84) and similar for CVD (HR, 1.35; 95% CI, 1.12–1.62) and non–AIDS-defining malignancies (HR, 1.30; 95% CI, 1.06–1.61). There was heterogeneity of IL-6 (P < .001) but not hsCRP (P = .15) or D-dimer (P = .20) as a predictor for different end points. CONCLUSIONS: IL-6 is a stronger predictor of fatal events than of CVD and non–AIDS-defining malignancies. Adjuvant antiinflammatory and antithrombotic therapies should be tested in HIV-infected individuals

    HIV-1 DNA predicts disease progression and post-treatment virological control.

    Get PDF
    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials

    Switching Virally Suppressed, Treatment-Experienced Patients to a Raltegravir-Containing Regimen Does Not Alter Levels of HIV-1 DNA

    Get PDF
    Background: Current HIV-1 antiretroviral therapy (ART) greatly reduces virus replication but does not significantly affect the viral reservoir. Raltegravir, a recently introduced integrase inhibitor, could, at least theoretically, reduce residual viremia in patients on ART and affect the viral reservoir size. The aim of this study was to assess whether switching therapy in treatment-experienced patients that were virally suppressed to a raltegravir-containing regimen reduces the size of the viral reservoir, and if such treatment leads to a change in levels of HIV 2-LTR circles in this patient group. Methods: 14 ART experienced individuals with a suppressed viral load (,50 HIV-1 RNA copies/mL plasma) at baseline (for at least 2 months) were switched to a raltegravir-containing regimen. Blood samples were taken at baseline and at $2 timepoints up to 4866 weeks. Levels of total HIV-1 DNA and 2-LTR circles in peripheral blood mononuclear cells (PBMCs) were measured using real-time PCR assays. Results: There was no significant change in HIV-1 total DNA levels over the study duration (p = 0.808), median slope 0.24 (conservative nonparametric 95 % CI: 211.78, 26.23). Low levels of 2-LTR circles were detected in 2 patients. One had 16 copies/10 6 PBMCs at baseline and the other had 34 copies/10 6 PBMCs at week 51. Conclusions: The switch to a raltegravir containing regimen was not associated with a significant change in HIV-1 total DNA levels in this cohort. There were no observed changes in the levels of HIV-1 2-LTR circles associated with raltegravi

    Analysis of infectious virus clones from two HIV-1 superinfection cases suggests that the primary strains have lower fitness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two HIV-1 positive patients, L and P, participating in the Amsterdam Cohort studies acquired an HIV-1 superinfection within half a year from their primary HIV-1 infection (Jurriaans <it>et al</it>., <it>JAIDS </it>2008, <b>47:</b>69-73). The aim of this study was to compare the replicative fitness of the primary and superinfecting HIV-1 strains of both patients. The use of isolate-specific primer sets indicated that the primary and secondary strains co-exist in plasma at all time points after the moment of superinfection.</p> <p>Results</p> <p>Biological HIV-1 clones were derived from peripheral blood CD4 + T cells at different time point, and identified as the primary or secondary virus through sequence analysis. Replication competition assays were performed with selected virus pairs in PHA/IL-2 activated peripheral blood mononuclear cells (PBMC's) and analyzed with the Heteroduplex Tracking Assay (HTA) and isolate-specific PCR amplification. In both cases, we found a replicative advantage of the secondary HIV-1 strain over the primary virus. Full-length HIV-1 genomes were sequenced to find possible explanations for the difference in replication capacity. Mutations that could negatively affect viral replication were identified in the primary infecting strains. In patient L, the primary strain has two insertions in the LTR promoter, combined with a mutation in the <it>tat </it>gene that has been associated with decreased replication capacity. The primary HIV-1 strain isolated from patient P has two mutations in the LTR that have been associated with a reduced replication rate. In a luciferase assay, only the LTR from the primary virus of patient P had lower transcriptional activity compared with the superinfecting virus.</p> <p>Conclusions</p> <p>These preliminary findings suggest the interesting scenario that superinfection occurs preferentially in patients infected with a relatively attenuated HIV-1 isolate.</p

    Differences in pre-sleep activity and sleep location are associated with variability in daytime/nighttime sleep electrophysiology in the domestic dog

    Get PDF
    The domestic dog (Canis familiaris) is a promising animal model. Yet, the canine neuroscience literature is predominantly comprised of studies wherein (semi-)invasive methods and intensive training are used to study awake dog behavior. Given prior findings with humans and/or dogs, our goal was to assess, in 16 family dogs (1.5–7 years old; 10 males; 10 different breeds) the effects of pre-sleep activity and timing and location of sleep on sleep electrophysiology. All three factors had a main and/or interactive effect on sleep macrostructure. Following an active day, dogs slept more, were more likely to have an earlier drowsiness and NREM, and spent less time in drowsiness and more time in NREM and REM. Activity also had location- and time of day-specific effects. Time of day had main effects; at nighttime, dogs slept more and spent less time in drowsiness and awake after first drowsiness, and more time in NREM and in REM. Location had a main effect; when not at home, REM sleep following a first NREM was less likely. Findings are consistent with and extend prior human and dog data and have implications for the dog as an animal model and for informing future comparative research on sleep

    HIV-1 Superinfection in the Antiretroviral Therapy Era: Are Seroconcordant Sexual Partners at Risk?

    Get PDF
    Acquisition of more than one strain of human immunodeficiency virus type 1 (HIV-1) has been reported to occur both during and after primary infection, but the risks and repercussions of dual and superinfection are incompletely understood. In this study, we evaluated a longitudinal cohort of chronically HIV-infected men who were sexual partners to determine if individuals acquired their partners' viral strains.Our cohort of HIV-positive men consisted of 8 couples that identified themselves as long-term sexual partners. Viral sequences were isolated from each subject and analyzed using phylogenetic methods. In addition, strain-specific PCR allowed us to search for partners' viruses present at low levels. Finally, we used computational algorithms to evaluate for recombination between partners' viral strains.All couples had at least one factor associated with increased risk for acquisition of new HIV strains during the study, including detectable plasma viral load, sexually transmitted infections, and unprotected sex. One subject was dually HIV-1 infected, but neither strain corresponded to that of his partner. Three couples' sequences formed monophyletic clusters at the entry visit, with phylogenetic analysis suggesting that one member of the couple had acquired an HIV strain from his identified partner or that both had acquired it from the same source outside their partnership. The 5 remaining couples initially displayed no evidence of dual infection, using phylogenetic analysis and strain-specific PCR. However, in 1 of these couples, further analysis revealed recombinant viral strains with segments of viral genomes in one subject that may have derived from the enrolled partner. Thus, chronically HIV-1 infected individuals may become superinfected with additional HIV strains from their seroconcordant sexual partners. In some cases, HIV-1 superinfection may become apparent when recombinant viral strains are detected

    Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model

    Get PDF
    Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. © 2013 Kline et al
    corecore