322 research outputs found

    Functional morphology of the blood-brain barrier in health and disease

    Get PDF
    The adult quiescent blood-brain barrier (BBB), a structure organised by endothelial cells through interactions with pericytes, astrocytes, neurons and microglia in the neurovascular unit, is highly regulated but fragile at the same time. In the past decade, there has been considerable progress in understanding not only the molecular pathways involved in BBB development, but also BBB breakdown in neurological diseases. Specifically, the Wnt/\u3b2-catenin, retinoic acid and sonic hedgehog pathways moved into the focus of BBB research. Moreover, angiopoietin/Tie2 signalling that is linked to angiogenic processes has gained attention in the BBB field. Blood vessels play an essential role in initiation and progression of many diseases, including inflammation outside the central nervous system (CNS). Therefore, the potential influence of CNS blood vessels in neurological diseases associated with BBB alterations or neuroinflammation has become a major focus of current research to understand their contribution to pathogenesis. Moreover, the BBB remains a major obstacle to pharmaceutical intervention in the CNS. The complications may either be expressed by inadequate therapeutic delivery like in brain tumours, or by poor delivery of the drug across the BBB and ineffective bioavailability. In this review, we initially describe the cellular and molecular components that contribute to the steady state of the healthy BBB. We then discuss BBB alterations in ischaemic stroke, primary and metastatic brain tumour, chronic inflammation and Alzheimer's disease. Throughout the review, we highlight common mechanisms of BBB abnormalities among these diseases, in particular the contribution of neuroinflammation to BBB dysfunction and disease progression, and emphasise unique aspects of BBB alteration in certain diseases such as brain tumours. Moreover, this review highlights novel strategies to monitor BBB function by non-invasive imaging techniques focussing on ischaemic stroke, as well as novel ways to modulate BBB permeability and function to promote treatment of brain tumours, inflammation and Alzheimer's disease. In conclusion, a deep understanding of signals that maintain the healthy BBB and promote fluctuations in BBB permeability in disease states will be key to elucidate disease mechanisms and to identify potential targets for diagnostics and therapeutic modulation of the BBB

    Co-expression of vascular endothelial growth factor (VEGF) and its receptors (flk-1 and flt-1) in hormone-induced mammary cancer in the Noble rat

    Get PDF
    Vascular endothelial growth factor (VEGF) is recognized to play a predominant role in breast cancer prognosis. The action of VEGF is mediated by two high-affinity receptors with ligand-stimulated tyrosine kinase activity: VEGFR-1/flt-1 and VEGFR-2/flk-1, which are expressed mainly in vascular endothelial cells. To the best of our knowledge, no previous studies on the expression of these receptors in breast cancer cells has been made. We have established a new animal model for breast cancer, using a combination of 17β-oestradiol and testosterone as ‘carcinogens’. Taking advantage of the animal model, we have demonstrated that mammary cancer cells expressed not only high levels of VEGF but also, surprisingly, its receptors (flt-1 and flk-1) in mammary cancer cells. Intense reactivities to VEGF, flt-1 and flk-1 were observed in mammary cancer cells, especially in invasive mammary carcinoma. Western blot analysis confirmed the increase in flk-1 and flt-1 proteins in induced mammary cancers. Based on these observations, we hypothesize that in mammary cancer, VEGF regulates, in addition to endothelial proliferation and angiogenesis, also growth of cancer cells by an autocrine mechanism mediated through its receptors. To further verify this hypothesis, we investigated the correlation between cellular proliferation and the expression of VEGF, flt-1 and flk-1. Using double-labelling immunocytochemistry, we have shown a correlation between high VEGF activity and Ki-67 expression. The Ki-67 indices in the areas of strong and weak VEGF reactivities were 58.3% and 3.7% respectively. Similarly, there was also a correlation of strong flk-1 and Ki-67 reactivity. The Ki-67 indices for areas of strong and weak flk-1 reactivities were 53.9% and 3.1% respectively. On the other hand, there was a reverse correlation between flt-1 and Ki-67 activities. These results indicate that overexpression of VEGF and flk-1 is correlated with high Ki-67 index. The data, therefore, suggest that VEGF may act as an autocrine growth factor for mammary cancer cells in vivo and this autocrine regulatory role may be mediated through flk-1. The present study is the first report showing that VEGF may act as a growth stimulator for mammary cancer cells. © 1999 Cancer Research Campaig

    Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast

    Get PDF
    Necrosis is a common feature of invasive carcinoma of the breast and is caused by chronic ischaemia leading to infarction. Although necrosis was previously assumed to be due to a generally poor blood supply in the tumour, in this study we show that it is present in tumours with focal areas of high vascular density situated away from the actual sites of necrosis. This may account, in part, for the previous observation that necrosis is linked to poor prognosis in this disease. Highly angiogenic tumours often display blood vessel shunting from one tumour area to another, which further exacerbates ischaemia and the formation of tumour necrosis. We have recently demonstrated that high focal microphage infiltration into breast tumours is significantly associated with increased tumour angiogenesis and poor prognosis and that the macrophages accumulate in poorly vascularized, hypoxic areas within breast tumours. In order to investigate the interactions of macrophages with chronic ischaemia (as reflected by the presence of necrosis) and angiogenesis in breast tumours, we quantified the levels of these three biological parameters in a series of 109 consecutive invasive breast carcinomas. We found that the degree of tumour necrosis was correlated with both microphage infiltration (Mann–Whitney U, P-value = 0.0009; chi-square, P-value = 0.01) and angiogenesis (Mann–Whitney U P-value = 0.0008, chi square P-value = 0.03). It was also observed that necrosis was a feature of tumours possessing an aggressive phenotype, i.e. high tumour grade (chi-square, P-value < 0.001), larger size (Mann–Whitney U, P-value = 0.003) and low oestrogen receptor status (Mann–Whitney U, P-value = 0.008; chi-square, P-value < 0.008). We suggest, therefore, that aggressive tumours rapidly outgrow their vascular supply in certain areas, leading to areas of prolonged hypoxia within the tumour and, subsequently, to necrosis. This, in turn, may attract macrophages into the tumour, which then contribute to the angiogenic process, giving rise to an association between high levels of angiogenesis and extensive necrosis. © 1999 Cancer Research Campaig

    Histidine-Rich Glycoprotein Can Prevent Development of Mouse Experimental Glioblastoma

    Get PDF
    Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF) or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG), a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B), in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma)

    Involvement of integrin-linked kinase in capillary/tube-like network formation of human vascular endothelial cells

    Get PDF
    Angiogenesis is a complex process involving an ECM and vascular endothelial cells (EC), and is regulated by various angiogenic factors including VEGF. The ability to form a capillary/tube-like network is a specialized function of EC. Therefore, in vitro angiogenesis was assessed by a capillary/tube-like network formation assay. There are three angiogenic parameters: capillary length, number of capillaries, and relative capillary area per field. We evaluated capillary length per field in the assay. VEGF promoted capillary/tube-like network formation of EC in a type I collagen gel matrix in vitro. Moreover, we demonstrated the involvement of ILK in a VEGF signaling pathway mediating capillary/tube-like network formation of EC using dominant-negative, kinase deficient ILK. This is a straightforward assay to monitor responses of human vascular endothelial cells

    The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen (HBO) therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. It combines hyperoxic effects with the stimulating potential of post-therapeutic reactive hypoxia. As its crucial effects, stimulation of fibroblast growth, induction of collagen synthesis and the initiation of angiogenesis are discussed. Angiogenesis is a multistage process resulting in the growth of blood vessels. It includes degradation of extracellular matrix, proliferation and migration of different cell populations and finally formation of new vessel structures. This complex chain of procedures is orchestrated by different cytokines and growth factors. Crucial mediators of angiogenesis are basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF); their <it>in-vivo </it>function is still not fully understood.</p> <p>Methods</p> <p>Forty-three patients suffering from sudden sensorineural hearing loss or tinnitus were treated with HBO. The therapy included 10 sessions of 90 minutes each, one session a day. Serological levels of bFGF and VEGF were assessed by enzyme-linked immunosorbent assays performed according to the manufacturer's instructions on day 1, 2, 5 and 10 of HBO therapy and were compared to mean values of the control group, related to the patient's age and sex, and their development observed over the ten days of HBO.</p> <p>Results</p> <p>There was no sex- or age dependency of bFGF observed in the present study, whereas under HBO our results showed a significant mitigation of the bFGF concentration. In the present data, there was no connection between the VEGF concentration and the patients' ages. Women showed significantly higher levels of VEGF. There was no significant change of VEGF concentration or the VEGF/bFGF ratio during HBO. All scored results varied within the range of standard values as described in the current literature.</p> <p>Conclusions</p> <p>A significant effect of HBO on serum concentrations of bFGF and VEGF was not verified in the present study. Additional application of exogenous growth factors in conjunction with HBO was not obviously linked by a coherent cause-and-effect chain as far as wound healing is concerned.</p

    Microsurgical and tractographic anatomical study of insular and transsylvian transinsular approach

    Get PDF
    This study is to define the operative anatomy of the insula with emphasis on the transsylvian transinsular approach. The anatomy was studied in 15 brain specimens, among five were dissected by use of fiber dissection technique; diffusion tensor imaging of 10 healthy volunteers was obtained with a 1.5-T MR system. The temporal stem consists mainly of the uncinate fasciculus, inferior occipitofrontal fasciculus, Meyer’s loop of the optic radiation and anterior commissure. The transinsular approach requires an incision of the inferior limiting sulcus. In this procedure, the fibers of the temporal stem can be interrupted to various degrees. The fiber dissection technique is a very relevant and reliable method for neurosurgeons to study the details of brain anatomic features. The DTI fiber tracking technique can identify the fiber tracts of the temporal stem. Moreover, it will also help further functional study of human insula

    Over-Expression of PDGFR-β Promotes PDGF-Induced Proliferation, Migration, and Angiogenesis of EPCs through PI3K/Akt Signaling Pathway

    Get PDF
    The proliferation, migration, and angiogenesis of endothelial progenitor cells (EPCs) play critical roles in postnatal neovascularization and re-endothelialization following vascular injury. Here we evaluated whether the over-expression of platelet-derived growth factor receptor-β (PDGFR-β) can enhance the PDGF-BB-stimulated biological functions of EPCs through the PDGFR-β/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. We first confirmed the expression of endogenous PDGFR-β and its plasma membrane localization in spleen-derived EPCs. We then demonstrated that the PDGFR-β over-expression in EPCs enhanced the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. Using AG1295 (a PDGFR kinase inhibitor), LY294002 (a PI3K inhibitor), and sc-221226 (an Akt inhibitor), we further showed that the PI3K/Akt signaling pathway participates in the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. In addition, the PI3K/Akt signaling pathway is required for PDGFR-β over-expression to enhance these PDGF-BB-induced phenotypes
    corecore