45,554 research outputs found

    Study of gossamer superconductivity and antiferromagnetism in the t-J-U model

    Full text link
    The d-wave superconductivity (dSC) and antiferromagnetism are analytically studied in a renormalized mean field theory for a two dimensional t-J model plus an on-site repulsive Hubbard interaction UU. The purpose of introducing the UU term is to partially impose the no double occupancy constraint by employing the Gutzwiller approximation. The phase diagrams as functions of doping δ\delta and UU are studied. Using the standard value of t/J=3.0t/J=3.0 and in the large UU limit, we show that the antiferromagnetic (AF) order emerges and coexists with the dSC in the underdoped region below the doping δ0.1\delta\sim0.1. The dSC order parameter increases from zero as the doping increases and reaches a maximum near the optimal doping δ0.15\delta\sim0.15. In the small UU limit, only the dSC order survives while the AF order disappears. As UU increased to a critical value, the AF order shows up and coexists with the dSC in the underdoped regime. At half filing, the system is in the dSC state for small UU and becomes an AF insulator for large UU. Within the present mean field approach, We show that the ground state energy of the coexistent state is always lower than that of the pure dSC state.Comment: 7 pages, 8 figure

    Supersymmetry and the Anomalous Anomalous Magnetic Moment of the Muon

    Get PDF
    The recently reported measurement of the muon's anomalous magnetic moment differs from the standard model prediction by 2.6 standard deviations. We examine the implications of this discrepancy for supersymmetry. Deviations of the reported magnitude are generic in supersymmetric theories. Based on the new result, we derive model-independent upper bounds on the masses of observable supersymmetric particles. We also examine several model frameworks. The sign of the reported deviation is as predicted in many simple models, but disfavors anomaly-mediated supersymmetry breaking.Comment: 4 pages, 4 figures, version to appear in Phys. Rev. Let

    Temporal and Spectral Correlations of Cyg X-1

    Get PDF
    Temporal and spectral properties of X-ray rapid variability of Cyg X-1 are studied by an approach of correlation analysis in the time domain on different time scales. The correlation coefficients between the total intensity in 2-60 keV and the hardness ratio of 13-60 keV to 2-6 keV band on the time scale of about 1 ms are always negative in all states. For soft states, the correlation coefficients are positive on all the time scales from about 0.01 s to 100 s, which is significantly different with that for transition and low states. Temporal structures in high energy band are narrower than that in low energy band in quite a few cases. The delay of high energy photons relative to low energy ones in the X-ray variations has also been revealed by the correlation analysis. The implication of observed temporal and spectral characteristics to the production region and mechanism of Cyg X-1 X-ray variations is discussed.Comment: 17 pages, 6 figures included, to appear in Ap

    Optical and transport properties in doped two-leg ladder antiferromagnet

    Get PDF
    Within the t-J model, the optical and transport properties of the doped two-leg ladder antiferromagnet are studied based on the fermion-spin theory. It is shown that the optical and transport properties of the doped two-leg ladder antiferromagnet are mainly governed by the holon scattering. The low energy peak in the optical conductivity is located at a finite energy, while the resistivity exhibits a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which are consistent with the experiments.Comment: 13 pages, 5 figures, accepted for publication in Phys. Rev. B65 (2002) (April 15 issue

    The optical counterpart of an Ultra-luminous X-Ray Source in NGC 5204

    Full text link
    Ultra-luminous X-Ray sources are extra-nuclear point sources in external galaxies with LX=1039L_X=10^{39}--104110^{41} erg/s and are among the most poorly understood X-ray sources. To help understand their nature, we are trying to identify their optical counterparts by combining images from the Hubble Space Telescope and the Chandra Observatory. Here we report upon the optical counterpart for the ULX in NGC 5204, which has average X-ray luminosity of 3×1039\sim3\times10^{39} erg/s and has varied by a factor of 50% over the last 10 years. A unique optical counterpart to this ULX is found by carefully comparing the Chandra ACIS images and HST WFPC2 and ACS/HRC images. The spectral energy distribution and the HST/STIS FUV spectrum of this object show that it is a B0 Ib supergiant star with peculiarities, including the λ\lambda1240 N V emission line that is uncommon in B stellar spectra but has been predicted for X-ray illuminated accretion disks and seen in some X-ray binaries. Study of its FUV spectrum leads to a binary model for this ULX in which the B0 Ib supergiant is overflowing its Roche Lobe and accreting onto the compact primary, probably a black hole. This picture predicts an orbital period of 10\sim10 days for different black hole mass, which can be tested by future observations

    Ne II Observations of Gas Motions in Compact and Ultracompact H II Regions

    Get PDF
    We present high spatial and spectral resolution observations of 16 Galactic compact and ultracompact H II regions in the [Ne II] 12.8 mu m fine-structure line. The small thermal width of the neon line and the high dynamic range of the maps provide an unprecedented view of the kinematics of compact and ultracompact H II regions. These observations solidify an emerging picture of the structure of ultracompact H II regions suggested in our earlier studies of G29.96-0.02 and Mon R2 IRS 1; systematic surface flows, rather than turbulence or bulk expansion, dominate the gas motions in the H II regions. The observations show that almost all of the sources have significant (5-20 km s(-1)) velocity gradients and that most of the sources are limb-brightened. In many cases, the velocity pattern implies tangential flow along a dense shell of ionized gas. None of the observed sources clearly fits into the categories of filled expanding spheres, expanding shells, filled blister flows, or cometary H II regions formed by rapidly moving stars. Instead, the kinematics and morphologies of most of the sources lead to a picture of H II regions confined to the edges of cavities created by stellar wind ram pressure and flowing along the cavity surfaces. In sources where the radio continuum and [Ne II] morphologies agree, the majority of the ionic emission is blueshifted relative to nearby molecular gas. This is consistent with sources lying on the near side of their natal clouds being less affected by extinction and with gas motions being predominantly outward, as is expected for pressure-driven flows.NSF AST-0607312, NSF-0708074SOFIA USRA8500-98-008NYSTAR Faculty Development ProgramNASA NNG 04-GG92G, CAN-NCC5-679Lunar and Planetary InstituteAstronom

    Kaluza-Klein Dark Matter

    Get PDF
    We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.Comment: 4 pages, 3 figures, discussion of spin-independent cross section clarified, references added, published versio
    corecore