6,258 research outputs found
Magnetic anisotropy, first-order-like metamagnetic transitions and large negative magnetoresistance in the single crystal of GdPdSi
Electrical resistivity (), magnetoresistance (MR), magnetization,
thermopower and Hall effect measurements on the single crystal
GdPdSi, crystallizing in an AlB-derived hexagonal structure are
reported. The well-defined minimum in at a temperature above N\'eel
temperature (T= 21 K) and large negative MR below 3T, reported
earlier for the polycrystals, are reproducible even in single crystals. Such
features are generally uncharacteristic of Gd alloys. In addition, we also
found interesting features in other data, e.g., two-step first-order-like
metamagnetic transitions for the magnetic field along [0001] direction. The
alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.Comment: RevTeX, 5 pages, 6 encapsulated postscript figures; scheduled to be
published in Phy. Rev. B (01 November 1999, B1
A Content Based Pattern Analysis System for a Biological Specimen Collection
Over the years many research collections of biological specimen have been developed for research in biological sciences. Number of specimens in some of these collections can be as high as several millions. There is a move to convert these physical specimens into digital images. This research is motivated by the need to develop techniques to mine useful information from these large collections of specimen images. Specific focus of this research is on the collection of parasites in the Harold W. Manter Laboratory (HWML) Parasite Collection, one of the top four parasite collections in the world. These parasites closely resemble in shape and have flexible bodies with rigid extremities. They have only a few specific structural differences. In this paper we present a technique to retrieve specimens based on shape of a given sample. This form of mining based on the shape of the specimen has the potential to discover linkages between specimens not otherwise known
Self-aligned silicidation of surround gate vertical MOSFETs for low cost RF applications
We report for the first time a CMOS-compatible silicidation technology for surround-gate vertical MOSFETs. The technology uses a double spacer comprising a polysilicon spacer for the surround gate and a nitride spacer for silicidation and is successfully integrated with a Fillet Local OXidation (FILOX) process, which thereby delivers low overlap capacitance and high drive-current vertical devices. Silicided 80-nm vertical n-channel devices fabricated using 0.5-?m lithography are compared with nonsilicided devices. A source–drain (S/D) activation anneal of 30 s at 1100 ?C is shown to deliver a channel length of 80 nm, and the silicidation gives a 60% improvement in drive current in comparison with nonsilicided devices. The silicided devices exhibit a subthreshold slope (S) of 87 mV/dec and a drain-induced barrier lowering (DIBL) of 80 mV/V, compared with 86 mV/dec and 60 mV/V for nonsilicided devices. S-parameter measurements on the 80-nm vertical nMOS devices give an fT of 20 GHz, which is approximately two times higher than expected for comparable lateral MOSFETs fabricated using the same 0.5-?m lithography. Issues associated with silicidation down the pillar sidewall are investigated by reducing the activation anneal time to bring the silicided region closer to the p-n junction at the top of the pillar. In this situation, nonlinear transistor turn-on is observed in drain-on-top operation and dramatically degraded drive current in source-on-top operation. This behavior is interpreted using mixed-mode simulations, which show that a Schottky contact is formed around the perimeter of the pillar when the silicided contact penetrates too close to the top S/D junction down the side of the pillar
Studies on soils. Part II. A microscopic study of the behaviour of the black cotton soil in salt solutions
This article does not have an abstract
Radio Observations of the Supernova Remnant Candidate G312.5-3.0
The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850
MHz have revealed a number of previously unknown radio sources. One such
source, G312.5-3.0 (PMN J1421-6415), has been observed using the
multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at
frequencies of 1380 MHz and 2378 MHz. Further observations of the source were
made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency
of 843 MHz. The source has an angular size of 18 arcmin and has a distinct
shell structure. We present the reduced multi-frequency observations of this
source and provide a brief argument for its possible identification as a
supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA
Lazy Abstraction-Based Controller Synthesis
We present lazy abstraction-based controller synthesis (ABCS) for
continuous-time nonlinear dynamical systems against reach-avoid and safety
specifications. State-of-the-art multi-layered ABCS pre-computes multiple
finite-state abstractions of varying granularity and applies reactive synthesis
to the coarsest abstraction whenever feasible, but adaptively considers finer
abstractions when necessary. Lazy ABCS improves this technique by constructing
abstractions on demand. Our insight is that the abstract transition relation
only needs to be locally computed for a small set of frontier states at the
precision currently required by the synthesis algorithm. We show that lazy ABCS
can significantly outperform previous multi-layered ABCS algorithms: on
standard benchmarks, lazy ABCS is more than 4 times faster
Effect of substrate roughness on growth of diamond by hot filament CVD
Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 μm to 0.91 μm (Centre Line Average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp 3 to non-sp 3 content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640°C without any additional substrate heating. The coatings grown at adverse conditions for sp 3 deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp 3 condition gives clear faceted grains
S-matrix approach to equation of state of nuclear matter
We calculate the equation of state of nuclear matter based on the general
analysis of the grand canonical partition function in the -matrix framework.
In addition to the low mass stable particles and their two-body scattering
channels considered earlier, the calculation includes systematically all the
higher mass particles and their exited states as well as the scattering
channels formed by any number of these species. We estimate the latter
contribution by resonances in all the channels. The resulting model-independent
virial series for pressure gets substantial contribution from the heavy
particles and the channels containing them. The series converges for larger
values of baryon density than found earlier.Comment: Version to appear in PRC, Rapid Communication
TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics
The nearest accreting T Tauri star, TW Hya was observed with spectroscopic
and photometric measurements simultaneous with a long se gmented exposure using
the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates
a 4.74 day period was present during this time. Absence of a similar
periodicity in the H-alpha flux and the total X-ray flux points to a different
source of photometric variations. The H-alpha emission line appears
intrinsically broad and symmetric, and both the profile and its variability
suggest an origin in the post-shock cooling region. An accretion event,
signaled by soft X-rays, is traced spectroscopically for the first time through
the optical emission line profiles. After the accretion event, downflowing
turbulent material observed in the H-alpha and H-beta lines is followed by He I
(5876A) broadening. Optical veiling increases with a delay of about 2 hours
after the X-ray accretion event. The response of the stellar coronal emission
to an increase in the veiling follows about 2.4 hours later, giving direct
evidence that the stellar corona is heated in part by accretion. Subsequently,
the stellar wind becomes re-established. We suggest a model that incorporates
this sequential series of events: an accretion shock, a cooling downflow in a
supersonically turbulent region, followed by photospheric and later, coronal
heating. This model naturally explains the presence of broad optical and
ultraviolet lines, and affects the mass accretion rates determined from
emission line profiles.Comment: 61 pages; 22 figures; to appear in The Astrophysical Journa
Prediction of Anisotropic Single-Dirac-Cones in BiSb Thin Films
The electronic band structures of BiSb thin films can be
varied as a function of temperature, pressure, stoichiometry, film thickness
and growth orientation. We here show how different anisotropic
single-Dirac-cones can be constructed in a BiSb thin film for
different applications or research purposes. For predicting anisotropic
single-Dirac-cones, we have developed an iterative-two-dimensional-two-band
model to get a consistent inverse-effective-mass-tensor and band-gap, which can
be used in a general two-dimensional system that has a non-parabolic dispersion
relation as in a BiSb thin film system
- …