819 research outputs found

    Fold Lens Flux Anomalies: A Geometric Approach

    Full text link
    We develop a new approach for studying flux anomalies in quadruply-imaged fold lens systems. We show that in the absence of substructure, microlensing, or differential absorption, the expected flux ratios of a fold pair can be tightly constrained using only geometric arguments. We apply this technique to 11 known quadruple lens systems in the radio and infrared, and compare our estimates to the Monte Carlo based results of Keeton, Gaudi, and Petters. We show that a robust estimate for a flux ratio from a smoothly varying potential can be found, and at long wavelengths those lenses deviating from from this ratio almost certainly contain significant substructure.Comment: 16 pages, including 8 figure

    Defining the Role of Alpha-Macroglobulins in the Pathogenesis of Flavivirus Encephalitis.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2018

    Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604

    Full text link
    We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which was selected by its high projected concentration of luminous red galaxies and contains the massive cluster Zwicky 1953. Using Subaru/Suprime-Cam BVRcIcizBVR_{c}I_{c}i^{\prime}z^{\prime} imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at z=0.3774z = 0.3774 and a smaller foreground halo at z=0.2713z = 0.2713. We then add a strong lensing constraint from a multiply-imaged galaxy in the imaging data with a photometric redshift of z5.03z \approx 5.03. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that use only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic such that one image is a highly-magnified "fold arc", which could be used to probe the source galaxy's structure at ultra-high spatial resolution (<30< 30 pc). We calculate the mass of the primary cluster to be Mvir=2.930.65+0.71×1015 M\mathrm{M_{vir}} = 2.93_{-0.65}^{+0.71} \times 10^{15}~\mathrm{M_{\odot}} with a concentration of cvir=3.460.59+0.70\mathrm{c_{vir}} = 3.46_{-0.59}^{+0.70}, consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.Comment: Accepted for publication in The Astrophysical Journal; 14 pages, 13 figures, 3 table

    Analysis of physical-chemical processes governing SSME internal fluid flows

    Get PDF
    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated

    A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: Implications for H0H_0

    Full text link
    Strong gravitational lensing provides an independent measurement of the Hubble parameter (H0H_0). One remaining systematic is a bias from the additional mass due to a galaxy group at the lens redshift or along the sightline. We quantify this bias for more than 20 strong lenses that have well-sampled sightline mass distributions, focusing on the convergence κ\kappa and shear γ\gamma. In 23% of these fields, a lens group contributes a \ge1% convergence bias; in 57%, there is a similarly significant line-of-sight group. For the nine time delay lens systems, H0H_0 is overestimated by 112+3^{+3}_{-2}% on average when groups are ignored. In 67% of fields with total κ\kappa \ge 0.01, line-of-sight groups contribute 2×\gtrsim 2\times more convergence than do lens groups, indicating that the lens group is not the only important mass. Lens environment affects the ratio of four (quad) to two (double) image systems; all seven quads have lens groups while only three of 10 doubles do, and the highest convergences due to lens groups are in quads. We calibrate the γ\gamma-κ\kappa relation: log(κtot)=(1.94±0.34)log(γtot)+(1.31±0.49)\log(\kappa_{\rm{tot}}) = (1.94 \pm 0.34) \log(\gamma_{\rm{tot}}) + (1.31 \pm 0.49) with a rms scatter of 0.34 dex. Shear, which, unlike convergence, can be measured directly from lensed images, can be a poor predictor of κ\kappa; for 19% of our fields, κ\kappa is 2γ\gtrsim 2\gamma. Thus, accurate cosmology using strong gravitational lenses requires precise measurement and correction for all significant structures in each lens field.Comment: 34 pages, 11 figures, accepted for publication in Ap

    Formalism for testing theories of gravity using lensing by compact objects. III: Braneworld gravity

    Full text link
    Braneworld gravity is a model that endows physical space with an extra dimension. In the type II Randall-Sundrum braneworld gravity model, the extra dimension modifies the spacetime geometry around black holes, and changes predictions for the formation and survival of primordial black holes. We develop a comprehensive analytical formalism for far-field black hole lensing in this model, using invariant quantities to compute all geometric optics lensing observables. We then make the first analysis of wave optics in braneworld lensing, working in the semi-classical limit. We show that wave optics offers the only realistic way to observe braneworld effects in black hole lensing. We point out that if primordial braneworld black holes exist, have mass M, and contribute a fraction f of the dark matter, then roughly 3e5 x f (M/1e-18 Msun)^(-1) of them lie within our Solar System. These objects, which we call "attolenses," would produce interference fringes in the energy spectra of gamma-ray bursts at energies ~100 (M/1e-18 Msun)^(-1) MeV (which will soon be accessible with the GLAST satellite). Primordial braneworld black holes spread throughout the universe could produce similar interference effects; the probability for "attolensing" may be non-negligible. If interference fringes were observed, the fringe spacing would yield a simple upper limit on M. Detection of a primordial black hole with M <~ 1e-19 Msun would challenge general relativity and favor the braneworld model. Further work on lensing tests of braneworld gravity must proceed into the physical optics regime, which awaits a description of the full spacetime geometry around braneworld black holes.Comment: 13 pages, 3 figures; accepted in PRD; expanded discussion of prospects for observing attolensing with GLAS

    Probing dark matter substructure in the gravitational lens HE0435-1223 with the WFC3 grism

    Full text link
    Strong gravitational lensing provides a powerful test of Cold Dark Matter (CDM) as it enables the detection and mass measurement of low mass haloes even if they do not contain baryons. Compact lensed sources such as Active Galactic Nuclei (AGN) are particularly sensitive to perturbing subhalos, but their use as a test of CDM has been limited by the small number of systems which have significant radio emission which is extended enough avoid significant lensing by stars in the plane of the lens galaxy, and red enough to be minimally affected by differential dust extinction. Narrow-line emission is a promising alternative as it is also extended and, unlike radio, detectable in virtually all optically selected AGN lenses. We present first results from a WFC3 grism narrow-line survey of lensed quasars, for the quadruply lensed AGN HE0435-1223. Using a forward modelling pipeline which enables us to robustly account for spatial blending, we measure the [OIII] 5007 \AA~ flux ratios of the four images. We find that the [OIII] fluxes and positions are well fit by a simple smooth mass model for the main lens. Our data rule out a M600>108(107.2)MM_{600}>10^{8} (10^{7.2}) M_\odot NFW perturber projected within \sim1\farcs0 (0\farcs1) arcseconds of each of the lensed images, where M600M_{600} is the perturber mass within its central 600 pc. The non-detection is broadly consistent with the expectations of Λ\LambdaCDM for a single system. The sensitivity achieved demonstrates that powerful limits on the nature of dark matter can be obtained with the analysis of 20\sim20 narrow-line lenses.Comment: Accepted for publication in MNRAS, 15 pages, 8 figure

    Conjugate (solid/fluid) computational fluid dynamics analysis of the space shuttle solid rocket motor nozzle/case and case field joints

    Get PDF
    Three-dimensional, conjugate (solid/fluid) heat transfer analyses of new designs of the Solid Rocket Motor (SRM) nozzle/case and case field joints are described. The main focus was to predict the consequences of multiple rips (or debonds) in the ambient cure adhesive packed between the nozzle/case joint surfaces and the bond line between the mating field joint surfaces. The models calculate the transient temperature responses of the various materials neighboring postulated flow/leakpaths into, past, and out from the nozzle/case primary O-ring cavity and case field capture O-ring cavity. These results were used to assess if the design was failsafe (i.e., no potential O-ring erosion) and reusable (i.e., no excessive steel temperatures). The models are adaptions and extensions of the general purpose PHOENICS fluid dynamics code. A non-orthogonal coordinate system was employed and 11,592 control cells for the nozzle/case and 20,088 for the case field joints are used with non-uniform distribution. Physical properties of both fluid and solids are temperature dependent. A number of parametric studies were run for both joints with results showing temperature limits for reuse for the steel case on the nozzle joint being exceeded while the steel case temperatures for the field joint were not. O-ring temperatures for the nozzle joint predicted erosion while for the field joint they did not

    DINOMO: An Elastic, Scalable, High-Performance Key-Value Store for Disaggregated Persistent Memory (Extended Version)

    Full text link
    We present Dinomo, a novel key-value store for disaggregated persistent memory (DPM). Dinomo is the first key-value store for DPM that simultaneously achieves high common-case performance, scalability, and lightweight online reconfiguration. We observe that previously proposed key-value stores for DPM had architectural limitations that prevent them from achieving all three goals simultaneously. Dinomo uses a novel combination of techniques such as ownership partitioning, disaggregated adaptive caching, selective replication, and lock-free and log-free indexing to achieve these goals. Compared to a state-of-the-art DPM key-value store, Dinomo achieves at least 3.8x better throughput on various workloads at scale and higher scalability, while providing fast reconfiguration.Comment: This is an extended version of the full paper to appear in PVLDB 15.13 (VLDB 2023
    corecore