54 research outputs found

    Correlating charge and thermoelectric transport to paracrystallinity in conducting polymers.

    Get PDF
    The conceptual understanding of charge transport in conducting polymers is still ambiguous due to a wide range of paracrystallinity (disorder). Here, we advance this understanding by presenting the relationship between transport, electronic density of states and scattering parameter in conducting polymers. We show that the tail of the density of states possesses a Gaussian form confirmed by two-dimensional tight-binding model supported by Density Functional Theory and Molecular Dynamics simulations. Furthermore, by using the Boltzmann Transport Equation, we find that transport can be understood by the scattering parameter and the effective density of states. Our model aligns well with the experimental transport properties of a variety of conducting polymers; the scattering parameter affects electrical conductivity, carrier mobility, and Seebeck coefficient, while the effective density of states only affects the electrical conductivity. We hope our results advance the fundamental understanding of charge transport in conducting polymers to further enhance their performance in electronic applications

    Fabrication of Microdevices with Integrated Nanowires for Investigating Low-dimensional Phonon Transport

    No full text
    Phonons in low-dimensional structures with feature sizes on the order of the phonon wavelength may be coherently scattered by the boundary. This may give rise to a new regime of heat conduction, which can impact thermal energy transport and conversion. Traditional methods used to investigate phonon transport in one-dimensional structures suffer from uncertainty due to contact resistance, defects, and limited control over sample dimensions. We have developed a new batch-fabrication technique for suspended microdevices with integrated silicon nanowires from silicon-on-insulator (SOI) wafers. The nanowires are defect-free and have extremely high aspect ratios (length/critical dimension >2000). The nanowire dimensions (length and critical dimension) can be precisely controlled during fabrication. With these novel devices, phonon transport in silicon nanowires is systematically investigated. The room temperature thermal conductivity of nanowires with critical width around 80 nm is about 20 W/(m K) and much lower than that in smooth VLS wires. This suggests that the surface morphology of the structures has a significant effect on the thermal conductivity, but this phenomenon is not currently understood. This fabrication technique can also be used for thermal transport investigation in a wide-range of low-dimensional structures. © 2010 American Chemical Society

    EPIC STAR: a reliable and efficient approach for phonon- and impurity-limited charge transport calculations

    No full text
    10.1038/s41524-020-0316-7npj Computational Materials614

    Thermal Conductance of the 2D MoS2/h-BN and graphene/h-BN Interfaces

    No full text
    10.1038/srep43886Scientific Reports74388

    Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties.

    No full text
    The strongly correlated thermoelectric properties have been a major hurdle for high-performance thermoelectric energy conversion. One possible approach to avoid such correlation is to suppress phonon transport by scattering at the surface of confined nanowire structures. However, phonon characteristic lengths are broad in crystalline solids, which makes nanowires insufficient to fully suppress heat transport. Here, we employed Si-Ge alloy as well as nanowire structures to maximize the depletion of heat-carrying phonons. This results in a thermal conductivity as low as ∼1.2 W/m-K at 450 K, showing a large thermoelectric figure-of-merit (ZT) of ∼0.46 compared with those of SiGe bulks and even ZT over 2 at 800 K theoretically. All thermoelectric properties were "simultaneously" measured from the same nanowires to facilitate accurate ZT measurements. The surface-boundary scattering is prominent when the nanowire diameter is over ∼100 nm, whereas alloying plays a more important role in suppressing phonon transport for smaller ones
    corecore