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Correlating charge and thermoelectric transport
to paracrystallinity in conducting polymers

Anas Abutaha'®, Pawan Kumar'®, Erol Yildirim23>, Wen Shi® 2, Shuo-Wang Yangz, Gang Wu Mg
Kedar Hippalgaonkar!4®

The conceptual understanding of charge transport in conducting polymers is still ambiguous
due to a wide range of paracrystallinity (disorder). Here, we advance this understanding by
presenting the relationship between transport, electronic density of states and scattering
parameter in conducting polymers. We show that the tail of the density of states possesses a
Gaussian form confirmed by two-dimensional tight-binding model supported by Density
Functional Theory and Molecular Dynamics simulations. Furthermore, by using the Boltz-
mann Transport Equation, we find that transport can be understood by the scattering
parameter and the effective density of states. Our model aligns well with the experimental
transport properties of a variety of conducting polymers; the scattering parameter affects
electrical conductivity, carrier mobility, and Seebeck coefficient, while the effective density of
states only affects the electrical conductivity. We hope our results advance the fundamental
understanding of charge transport in conducting polymers to further enhance their perfor-
mance in electronic applications.
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he diverse morphologies obtained from different proces-

sing methods obfuscate the fundamental understanding

of charge transport in conducting polymers. These
morphologies alter the degree of energetic disorder in the elec-
tronic structure significantly>2, The structural disorder is usually
described by paracrystallinity (g) which represents the fluctuation
range of interchain spacings. A general relationship between
charge transport and paracrystallinity in conducting polymers is
known!, showing that higher g induces more states in a material’s
electronic band gap, which limits charge transport in conducting
polymers2. Those electronic states were shown to distribute in a
Gaussian shape in energy space>#, where its width (w) is defined
as energetic disorder. Although there have been some efforts to
establish a charge transport model based on Gaussian DOS>,
energy-dependent scattering of the charge carriers was ignored,
which is crucial in determining transport, especially in highly
doped polymers that are useful for real-world applications.
Experimentally, thermoelectric studies provide a rigorous
approach to probe energetics of charge scattering® with respect to
structural morphology”:8. For instance, energy-dependent scat-
tering was considered in describing charge transport in con-
ducting polymers; however, the DOS was not accounted for,
resulting in partial understanding of charge transport®.

Energetic disorder in conducting polymers is caused by many
factors such as positional disorder!, dynamic effects®, polariza-
tion, and polaronic effects!®!1. However, their contributions to
the total energetic disorder vary depending on the organic system
under study. For example, polarization effect, due to induced
dipole moments, is a major cause of the energetic disorder in
small molecules where positional disorder is almost neglected!!.
On the other hand, polaronic effect due to doping in organic
semiconductors could alter the energetic disorder; however, it can
be negligible in intrinsically highly disordered polymers!®.
Therefore, positional disorder plays the most important role in
conjugated polymers with higher DOS widths (w > 0.1 eV)10.

In our work, we account for such structural disorder by using
Gaussian DOS in the Boltzmann Transport Equation (BTE)
under relaxation time approximation. Several scattering
mechanisms play a key role in shaping charge transport as
defined by BTE formalism. The scattering parameter (r) is a
physical factor that reflects a specific scattering mechanism. We
find that r affects the electrical conductivity, carrier mobility, and
Seebeck coefficient, while the effective DOS only affects the
electrical conductivity. We investigate the relationship between
transport properties and the DOS determined by paracrystallinity
in conducting polymers. First, we perform tight-binding (TB)
model calculations supported by density functional theory (DFT)
and molecular dynamics (MD), to confirm that the DOS tail
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exhibits a Gaussian shape whose width (w) increases exponen-
tially with g. Second, we corroborate our model by fitting litera-
ture data of transport properties for a variety of conjugated
polymers, and conclude that different classes of these possess
distinct r values and effective DOS.

Results

Electronic density of states and paracrystallinity. Charge
transport along polymer backbones (intrachain) is favorable due
to stronger electronic coupling within the chain; however, the
electronic coupling between the backbones (interchain, m-n) is
more critical since it dominates macroscopic transport properties
in a real polymeric system!213. So, the effect of g, in the inter-
chain direction, on w is more relevant to our study. As an
example, we explore the electronic band strucure of the proto-
typical conducting polymer, poly(3-hexylthiophene) (P3HT), at

different g values. Here, g = ((d*)/d3 — 1)1/2, where (d — dy)
represents the fluctuations in interchain distance; d is the actual
interchain distance; and dy = (d) is the average interchain dis-
tance!®. In order to determine the electronic band struture of
P3HT, intensive DFT calculations are performed on a perfect
crystal (g=0%) (Fig. 1a, Supplementary Fig. 1); however, DFT
becomes computationally challenging when mimicing the real
structure of conducting polymers with intrinsic disorder. Instead,
we proceed with a two-dimensional (2D) TB model, as shown in
Fig. 1b, to mimic the behavior of a bulk polymer with a specific
value of g. The average values of hopping parameters, h and ¢
denoted for intrachain and interchain, respectively, are calculated
for random samples whose interchain spacings possess realistic
probability distribution functions (PDFs) as discussed below. The
2D TB model reproduces the DFT band dispersions very well for
a perfect P3HT crystal (Fig. 1c), which allows us to perform
further 2D TB calculations for P3HT with higher g values (Sup-
plementary Fig. 2). In fact, to corroborate our methodology, after
accounting for spatial correlations between the P3HT chains
(therefore deviating away from a perfect crystal), we show that 2D
TB reproduces the band dispersions obtained from DFT (Sup-
plementary Fig. 3) as well. However, performing DFT on a ran-
domly disordered sample with high paracrystallinity similar to
that observed in experiments is not computationally tractable as it
requires a very large number of molecules.

Therefore, in order to understand the effect of paracrystallinity
on the electronic structure, we generated different configurations
of P3HT, to introduce more positional disorder, using MD
simulations (Supplementary Figs. 4-6 and 9, and Supplementary
Note 1). It is found that all of these configurations result in PDFs
that can be best fitted to a Gumbel distribution with different
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Fig. 1 Electronic band structure of poly(3-hexylthiophene) (P3HT) obtained by density functional theory (DFT) and tight-binding (TB) calculations.
a Lattice structure of P3HT unit cell consisting of two chains with two monomers each. b A two-dimensional (2D) TB model where the red and blue circles
stand for the two inequivalent sites in each P3HT unit cell. ¢ Comparison of the electronic band structures of P3HT obtained from DFT and 2D TB model.
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Fig. 2 The relationship between the electronic density of states (DOS) and paracrystallinity (g). a Probability distribution function (PDF) as a function of
the relative change in interchain distance for the case of g = 7.93%, where PDF fits best with Gumbel function. b DOS tails calculated using a two-

dimensional tight-binding (2D TB) model at different values of g, all structures can be fitted by Gaussian distribution. The case of g = 0% represents the
highest occupied molecular orbital (HOMO) level of crystalline P3HT. ¢ The width of DOS tail (w) as a function of g. w increases exponentially with g.

values of w, which are directly proportional to g (see
Supplementary Figs. 7 and 10). For instance, the PDF of the
interchain distance for g=7.93% is shown in Fig. 2a. The origin
of the specific shape of PDF arises from the asymmetric nature of
Lennard-Jones potential (Supplementary Fig. 8), which demon-
strates the fact that the interchain compressibility is harder than
expansion. As a result, symmetric Gaussian distribution, as has
been considered in other studies?, is not a good representation of
the PDF. To study the electronic structure of P3HT for a wider
range of (0—20%), a 2D TB model is then applied on crystallites
composed of 100 n-m stacked chains, with 150 sites along the
intrachain direction in each chain. This leads to a TB
Hamiltonian with dimensions of 15,000 x 15,000. The relative
change of interchain distance is generated based on the Gumbel
distribution for a specific value of g. Figure 2b shows the
electronic DOS tails for different g values. The DOS tails obtained
from 2D TB model can be fitted by Gaussian functions whose w
values increase exponentially with g (Fig. 2¢). Thus, the electronic
DOS tail is seen to be well represented by a Gaussian distribution,
and the experimentally measured g, for instance, can be correlated
to its width. On the other hand, other reports?> showed that by
assuming a Gaussian function for the interchain spacings, an
exponential tail of DOS can be generated by performing simple
TB calculations, and therefore, this may alter the results of charge
transport modeling. Therefore, choosing a proper PDF is a crucial
step when modeling transport properties in disordered polymers.

Electronic transport properties under Gaussian DOS. Armed
with this confirmation of the shape of the DOS tail, we now use
the framework of the Boltzmann transport equations to under-
stand charge transport properties for a variety of polymers. Here,
the electrical conductivity is given as

az/aE(—g—{E)dE, (1)

where oz for 3D isotropic systems under the relaxation time
approximation is

2¢ (E)(E - E)D(E) @)

Op =
E
3m

and the DOS tail has a Gaussian shape given by

N, (Er)rn)
D(E) = —t=e 27, (3)

w271

where e is the electronic charge; m”" = m, is the effective mass of
charge carriers, which is approximated by the free electron mass
(see Eq. (8)) without loss of generality; 7 is relaxation time
between two scattering events, and can be approximated as

¢
7(E) = 1, (%) ; To is the relaxation time constant (10fs, see

Supplementary Note 2); kg is Boltzmann constant; T is the
absolute temperature; Ey is the energy at DOS peak (see Fig. 3a); f
is Fermi-Dirac distribution function; E; is the transport energy
where charge carriers with lower energies cannot contribute to
transport; Ni/w is the ratio of the total energy states to the tail
broadening (henceforth referred to as “effective DOS”).

The Seebeck coefficient is

o0

7(E) ED(E) (- %) (E—E;)dE.  (4)

ela J,

As doping increases, and Er approaches to E;, ¢ increases as
more states become available for carriers to occupy (Fig. 3b).
Interestingly, o increases also with lower degree of disorder
(smaller w), irrespective of r value, which is in agreement with
previously observed ¢ in conducting polymers®. Figure 3c shows
the calculated Hall mobility (p.y) (Supplementary Eq. (7)) as a
function of Ep—E, for different r values. Remarkably, gy, is not
very sensitive to the effective DOS. On the other hand, S decreases
with Er—E, and exhibits a prominent dependence on r, where
higher S can be found for r=1.5 (Fig. 3d). However, S is not
sensitive to w (Supplementary Fig. 14). For thermoelectric
applications, the power factor (052) is considered as a measure
of the material’s electronic performance. Conducting polymers
that have stronger energy-dependent scattering, r = 1.5, exhibit
higher power factor than those that with r = —0.5 (Supplemen-
tary Fig. 15). Superior power factor, for polymers with r=1.5,
arises from the concurrent enhancement in ¢ and S compared
with their counterparts with r = —0.5, for the same effective DOS.
Therefore, our analysis corroborates in a rigorous manner that in
order to improve the thermoelectric performance of conducting
polymers, one would have to experimentally achieve highly doped
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Fig. 3 The parameters of Gaussian density of states (DOS) and transport properties. a Gaussian density of states of the band tail with broadening (w).
The respective energy levels are Fermi energy (Ep), transport energy (E;), and Gaussian peak (Eq). For non-degenerate polymers, Eg is located at energies
much lower than E;. b Electrical conductivity as a function of Ef — E;, where it strongly depends on the effective density of states, N,/w, and weakly on the
scattering parameter, r. ¢ Electrical mobility exhibits independent behavior with Er — E; when E < E;, otherwise, it changes according to the scattering
parameter, r. d Seebeck coefficient decreases with the absolute value of Ef — E;, and it is predominantly dependent on r. All values of N,/w and r are
selected based on our analysis on different classes of conducting polymers as discussed below.
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Fig. 4 Charge transport properties for different classes of conducting polymers. Experimental values of Seebeck coefficient as a function of electrical
conductivity for a poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) (circles)> and poly(3,4-ethylenedioxythiophene):tosylate
(PEDOT:Tos) (pentagons)8, and for b poly(3-hexylthiophene) (P3HT) (triangles and circles) and poly(2,5-bis(3-tetradecylthiophen2-yl)thieno[3,2-b]
thiophene) (PBTTT) (squares and diamonds)4¢ 47, The shaded stripes represent the calculated values using our model where the lower (dashed lines) and
the upper (solid) limits are determined by the Ny/w as specified. ¢ Experimentally measured field-effect mobility as a function of paracrystallinity (g) for
polymers with different molecular weights!. The conducting polymers are P3HT (downward triangles)!, P3HT (upward triangles)?4, PBTTT (squares)#8,
poly(2,5-bis(3-tetradecylthiophen2-yl)thieno[3,2-bIthiophene) P(NDI-T2) (circles)4®, Poly{[N,N-9-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis
(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)}, [C, Sil (PII2T [C, Sil) (pentagons)°0, and diketopyrrolopyrrole-benzothiadiazole copolymer, [C,
Se] (DPP-BT [C, Sel) (diamonds)>!. The dashed line is drawn at mobility of 1Tcm2V—1s~1. The legend size is linked to the molecular weight (the larger
molecular weight, the larger the legend).

yet perfectly ordered, highly packed polymers, where their charge prototypical conducting polymers, PEDOT, P3HT, and PBTTT
carrier transport is described by r =1.5. (Fig. 4a, b). PEDOT-based polymers are some of the most stu-

died, where their conjugated backbones form linear chains, which
Modeling the experimental transport properties. Following this, ~can be separated by networks of other organic materials such as
we study in detail the relationship between S and o, for three PSS or Tos. We find that PEDOT-based polymers are best
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modeled when r= —0.5, while the model deviates away from
experimental observations significantly in the case of r=1.5,
which is consistent with previous reports where 3D transport was
assumed®. To interpret this distinct r value obtained for PEDOT-
based polymers, it is interesting to examine the basic structure of
PEDOT chain which has a linear form of EDOT monomers,
which lacks any side chains that promote backbone rigidity,
hence more chain vibrations (phonons) would exist in PEDOT-
like polymers. Interestingly, PEDOT:Tos exhibits less energy
broadening (w~0.2¢eV), and hence larger Ny/w, compared to
PEDOT:PSS (w ~ 0.8 eV), indicating that PEDOT:Tos chains tend
to be more aligned, which is supported by grazing incident wide
angle X-ray scattering (GIWAXS)8. In fact, a large broadening of
DOS tail (~1 eV) has been reported in highly disordered PEDOT:
PSS thin films using ultraviolet photoelectric spectroscopy mea-
surements!®, which agrees well with our fitted values of w for
PEDOT:PSS. Several experiments were able to successfully align
PEDOT, and hence enhance its electrical conductivity!”>18.

On the other hand, P3HT and PBTTT possess a distinct
monomer structure with additional side chains, which help in
enhancing the electronic coupling in the n—m stacking direction
by facilitating the backbones to be aligned in 2D planes!.
Usually, upon doping P3HT and PBTTT, the ionized counterions
are preferentially positioned and arranged in between the side
chains?® that essentially enhance the backbone rigidity. These
dissimilar chemical features in P3HT or PBTTT, compared to
PEDOT-like polymers, would explain why charge carriers in this
family of polymers would possess a different scattering mechan-
ism. Indeed, it is found that P3HT and PBTTT exhibit r=1.5
(Fig. 4b), suggesting that the dominant scattering mechanism is
determined by the ionized counterions. Interestingly, the
relaxation time calculations for charge carriers in P3HT at
moderate doping levels (n~ 1029cm—3) show that ionized
impurity scattering exhibits shorter relaxation times compared
to scattering from acoustic phonons (see Supplementary Note 2).
Moreover, since P3HT and PBTTT have conducting paths only
along their backbones, rather than the insulating side chains, they
have less energy states per unit volume (smaller Ny), and, hence,
their effective DOS (N/w) is smaller compared to that for
PEDOT-based polymers, regardless of w value. Indeed, the fitting
bands overlap with the experimental values of P3HT and PBTTT
at lower values of Ny/w (1017-101° eV~1 cm—3) compared to Ny/w
of PEDOT (~10%2! eV—1 cm—3). The effective DOS of P3HT and
PBTTT conducting polymers with side chains are found to be five
orders of magnitude lower than the one for PEDOT polymers. N,
can increase upon doping, which explains the larger N,/w values
at higher range of electrical conductivities (Fig. 4b)1®. Similar
order-of-magnitude difference in the transport coefficient (og)
was also observed by Kang and Snyder® when comparing PEDOT
with other polymers that have side chains. We consequently
explain that the distinct features of monomer structures of those
two classes of conducting polymers result in different values of
Ny/w. Another interesting finding in P3HT and PBTTT is that w
values are smaller (0.1—0.3 eV) than the ones found for PEDOT:
PSS (w~ 0.8 V), which is consistent with the fact that polymers
with side chains tend to aggregate in crystallized domains, and
hence narrower DOS tails could be obtained. It is worth mentioning
that, in our analysis, Er exceeds E, at most by ~0.4 eV, which falls
in the same range as DOS broadening, which is physically
reasonable?!-22, Furthermore, the fitting curves align well with the
experimental results of PEDOT:PSS as o>1S/cm, while they
deviate from the ones of PEDOT:Tos at 0<0.3 S/cm (Fig. 4a),
which may be attributed to a different transport nature such as
hopping as previously reported”. Similarly, in Fig. 4b, there are at
least three orders of magnitude where ¢>0.1S/cm at which
transport can be described well by Boltzmann transport

equations. Note that for highly doped conducting P3HT and
PBTTT (0>100 Scm™!), bipolarons (spinless charge carriers)
can be formed within the polymer backbones?3, which then
possibly cause a deviation from Fermi-Dirac statistics.

Next, we extend our discussion to charge mobility (4) of
carriers occupying the Gaussian DOS tail. In conducting
polymers, the increase in p with molecular weight is well
known?423, but its dependence on g is still conceptually lacking!.
We correlate their field-effect transistor (FET) mobility (4pgr)
with the experimentally measured g (Fig. 4c). Strikingly, prgr
does not show any clear dependence on g opposite to what is
commonly stated that molecular ordering enhances pgpgr
(Supplementary Fig. 13). This shows that yppr depends only on
the degree of polymerization; as the molecular weight increases
and saturates, so does the pppr. In fact, yppr of some highly
disordered (g>10%) high-molecular weight conducting poly-
mers, such as P(NDI-T2), PII2T[C, Si], and DPP-BT[C, Se],
exceeds the ones that have been reported for more crystalline
polymers, such as P3HT and PBTTT (Fig. 4c). The highly
disordered, “near amorphous” polymers tend to form short range
crystalline aggregates, which are electrically interconnected by
“tie-chains”, and hence allowing for high yppr despite their high g
values!.

Finally, we utilize BTE formalism to understand Hall mobility
(przan) (Supplementary Eq. (7) and Supplementary Note 3), which
represents the intrinsic pyy,y in the bulk semiconducting polymer,
unlike FET geometry where pppy reflects the transport at
the semiconductor-dielectric interface. Although iz, is difficult
to measure for most paracrystalline conducting polymers, a few
reports?0-20 have attempted this measurement albeit by consider-
ing the degenerate form of mobility (¢, = o/ne) without taking
into account r (Supplementary Fig. 12). For instance, Kang et al.20
measured g,y in highly doped PBTTT and PEDOT:PSS. At such
high levels of doping, our model predicts accurately gy, of
PBTTT if we consider r = 0.5 (Supplementary Table 2), different
from r=15 as deduced from S- o relationship (Fig. 4b). In
highly doped PBTTT, the ionized anions which reside in the side
chain regions are partially screened by the large concentration of
charge carriers that travel in the - stacking”?%?’, and hence, in
addition to ionized impurities, acoustic phonons will contribute
to the total scattering mechanism, which explains the different
value of r. On the other hand, PEDOT:PSS exhibits highly
degenerate features; hence, Ry does not depend on r (Supple-
mentary Fig. 11). Therefore, one can use py, =0Ry = to
calculate mobility which indeed results in a good agreement
between experimental and calculated values (Supplementary
Table 2). This solidifies our claim that pyy,y; is predominantly
dominated by r and not the Ni/w ratio at a particular doping level.
Our findings validate generally accepted design principles for
organic-based electronics, where r = 1.5 polymers are preferred as
they can potentially exhibit higher intrinsic mobilities, potentially
greater than 10 cm? V~1s~! (Fig. 2c). Additionally, monomers
that enhance the three-dimensional molecular packing (larger N;)
along with improved chain alignment (smaller w) can enhance
electrical conductivity, without Seebeck saturation until much
higher doping levels.

Discussion

In summary, we provide a general framework to understand
charge transport in conducting polymers by solving the full
Boltzmann transport equation. TB model calculations sup-
ported by DFT and MD reveal that the DOS tail in conducting
polymers can be well described by a Gaussian distribution
which its width increases exponentially with paracrystallinity.
By correlating experimental values of Seebeck coefficient and
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electrical conductivity for different classes of conducting
polymers, we find that charge transport can be fully described
by the scattering parameter, and the ratio of the total number
of energy states to DOS broadening. In addition, our frame-
work explains well experimentally observed values of field-
effect and Hall mobilities in this class of materials. Our study
sheds light on the basic physics of charge transport in con-
ducting polymers that will help in designing better conducting
polymers with desired functionalities in many electronic
applications.

Methods

DFT calculations. The initial structure of P3HT crystal was constructed with
lattice parameters?®2%: a = 16.18 A, b=7.72 A, c=7.89 A, a==90° and y =
86.16° that are in agreement with the experimental parameters reported previously.
Atomic positions were optimized by using Perdew, Burke and Ernzerhof (PBE)30
exchange-correlation functional with Tkatchenko-Scheffler (TS) semi-empirical
dispersion correction parameters3! in CASTEP plane-wave pseudopotential soft-
ware package®2. Ultrasoft pseudopotentials were adopted with 410 eV cut-off
energy. Self-consistent field (SCF) convergence criteria are set to 2.0 x 10~¢eV/
atom. During optimization, 1.0 x 105 eV/atom for energy, 0.001 A for max dis-
tance, and 0.03 eV/A for maximum force cut-off parameters were applied to get
fully relaxed structures. Interchain distance for equilibrium structure of P3HT was
3.862 A (see Fig. 1a). Then, the interchain distance was adjusted manually between
2.862 and 5.862 A (from d — 1 to d+ 2 A) to calculate the band structure. We
calculated five different characteristic parameters of the band structures which are
intrachain conduction band width (W,_y,), intrachain valence band width (W,_y),
interchain conduction band with (W), interchain valence band with (W,), and
band gap (E,) as represented in Supplementary Fig. 1a. The band structure para-
meters calculated for different interchain distances are given in Supplementary
Fig. 1b. E; and W,_y, increase and W, W, and W__y, decrease with increasing
interchain distance. All the parameters can be well fitted by exponential functions.
Next we will construct a TB model from the band structure parameters. In order to
further validate our approach, we have done more DFT and TB calculations at
certain values of disorder. In a cell with two P3HT chains, we can move one chain
against another by §, and this will cause the final separation to be (dy + 6) and (d,
— §). We calculated the band structures using both PBE DFT and our TB model
(Supplementary Fig. 2).

TB calculations. The electronic structure simulation of a polymer supercell with
large paracrystallinity (g) using DFT is computationally challenging. Instead, we
develop a two-dimensional (2D) TB model to mimic the behavior of a polymer bulk
for specific value of g. Here, g is defined as g = ((6/dy)>)*° = ((d?)/d2 — 1)*?,
where § = d — d, represents the change of interchain distance between the back-
bones of the adjacent chains, d is the interchain distance, and dy = (d) is the
averaged interchain distance!. The average (d?) is done for randomized samples
generated according to realistic distribution functions (see below).

Based on P3HT geometry, there are only two directions for charge transport.
One direction is along the polymer backbone and the electron hopping is caused by
the delocalized m-orbital. Another direction is along the m — 1 stacking direction
(interchain transport). We adopt one p-like orbital per monomer, and thus the
interaction between neighboring sites (intrachain) is & = t,,, and the interchain
interaction in the m — 7 stacking direction is t = t,,,.

It is straightforward to write the Hamiltonian for a perfect two-dimensional
lattice:

(5)

helks™ 4 pe—ikm geikym o ek } [Zh cosk,m  2tcosk,m

tem 4 te R peikim 4 pe—ikem 2tcosk,m 2hcosk,m

Solving the eigen problem and we can obtain the eigen energies as E(k,, k,) =
2h cos k. + 2t cos kym. Note that the hopping parameters, & and ¢, depend on the
interchain distance d; therefore, it is possible to fit the parameters using the band
widths obtained from DFT calculation. So, one can find that W, = 4t., W, = —4t,,
We_p,=2h,, and W,_y, = —2h,. Here we assume () = a, - exp(—p, - §) and
h(8) = hy + a, - exp(—P,, - &), where §=d — d, is the change in interchain
distance. These relations ensure that the interchain hopping decays to zero when
the interchain distance approaches infinity, and the intrachain hopping converges
to finite value simultaneously.

After fitting, we find t.(8) = 0.1458 exp(—1.5900 8) and h (8) = 0.7934 +
0.0153 exp(—1.5599 8) for conduction bands, and ¢, (8) = —0.1495 exp(—1.7081 §)
and h,(8) = —0.9907 + 0.0628 exp(—1.6033 §) for valence bands. The unit of all
the hopping parameters is eV, and the unit of & is A. Interestingly, the 2D TB model
reproduces the DFT band dispersions very well (Supplementary Figs. 2 and 3).

From the band dispersions of P3HT crystal, it is possible to find the electronic
effective masses in interchain and intrachain directions for both valence and

conduction bands as the following:

2712 272
Eihkﬁhk(zﬁ;:) ©)

Tom* T 2m*\ L
E(E) = 2ty cos k, 7 + 2h, cos k., (7)
2/ 1 2/ 1
T R Y 8
Imt =gy I = ®

If we take the interchain and intrachain distances to be a =3.862 A and [ =
3.945 A, respectively, the effective masses will be (m*);,..,= 7.007m,, (m*)}, .=
6.835 My, (m*)icntra: 1‘211me’ (m*);fntra: 1.0557]’!2.

The total effective mass (m™*) accounts for both transport directions; interchain
(Myper ™) and intrachain (my,,,*):

1 1 1

Ex= =T % ©)

*
m Minger Mintra

so, if we take the calculated values of m;, * and m,,* for P3HT obtained from
the TB model, the total m* is found to be close to the rest mass of electron (). A
lower m* is found in the intrachain direction for other polymers as reported

previously®3.

MD simulations. Three different calculations were performed based on three
distinct molecular arrangements (Supplementary Figs. 4-6) of P3HT to create a
range of g values by using classical simulation methods based on COMPASS force
field3*. NVT ensemble, Nose Thermostat, and 1 fs step size were used in all
simulations. For the three different simulations, the g values were calculated to be
(i) 1.04%, (ii) 2.40%, and (iii) 7.93%. Probability distribution functions (PDF) for
the interchain distance of these simulations are given in Supplementary Fig. 7.
These results show that the temperature effect can only cause a relatively low
paracrystallinity (g < 8%) in P3HT crystal. However, it should be noted that we
used optimized well-packed crystal under periodic boundary conditions as an
initial structure.

In order to get an analytic expression of the Probability distribution functions
(PDF) so that we can generate a distribution function for any g, we attempted four
different PDFs, namely Gumbel, Rayleigh, Logistic, and Gaussian distributions, to
fit the PDF we found from the MD simulations (Supplementary Fig. 7). It can be
found that the Gumbel distribution fits best compared to the other three
distributions, especially when g is large. Therefore, Gumbel distribution is
considered in our calculations later when generating a wider range of
paracrystallinity (0 < g <20%).

The PDF of Gumbel distribution can be written as

£) =%exp[—<z+eﬁ>], (10)

where z = X;T“, and ¢ and f are fitting parameters. In our calculations, 4 is set to
0 so that the peak of PDF always is at 0. Meanwhile, since the standard deviation of
Gumbel distribution is 78/+/6, which should equal to g; therefore, for a given g, the
PDF of the relative change of interchain distance &/d, can be described by a
Gumbel distribution with 8 = v/6g/7.

All the PDFs possess similar asymmetric shape. The origin of this asymmetry
comes from the asymmetric Lennard-Jones potential, which describes harder
interchain compressibility than interchain expansion. The relation for the total
energy with interchain distance (given as “dy” in Supplementary Fig. 1b) is
calculated by molecular mechanics calculations and is plotted in Supplementary
Fig. 8. As a result, symmetric Gaussian distribution does not provide a good fitting
to the PDF for P3HT interchain distances.

It is worth mentioning that, in our work, we neglect the possibility of any
change in the intrachain distance between neighboring sites, which does not affect
our overall calculations of charge transport. We have two reasons that justify this
approximation. First, the intrachain connection is covalent bonds, which is much
stiffer than the nonbonding interactions among the chains (van der Waals), which
means that the disorder is less likely to take place in the intrachain direction.
Second, the intrachain hopping parameter is much larger than the interchain one,
so one can expect that intrachain disorder mainly results in deeper energy states in
the DOS.

Relaxation time calculations. The electronic structure calculations were per-
formed by the projector augmented wave3®> method with PBE exchange-correlation
functional®® in Vienna Ab initio Simulation Package (VASP)%”. The structural
optimization was conducted by PBE functional with the dDsC dispersion correc-
tion38. Throughout the calculations, the convergence criterion of the total energy
was set to be 107 eV in the SCE iteration. The cut-off energy for the plane-wave
basis set was set to be 600 eV. The cut-off radius for pair interactions was set to be
50 A. The k-mesh of 2 x 1 x 2 was used during the structural optimization. The
single-point energy and charge density calculations were performed on the k-mesh
of 4 x 2 x 4. For relaxation time calculations, a dense Monkhorst-Pack k-mesh of
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40 x 8 x 40 was used, which amounts to a total number of 12,800 points in the
irreducible Brillouin zone.
According to the Fermi’s Golden rule3, the relaxation time, 7, takes the form

1 2
?k - <hNkQ> ZlM(kv k/)lza(sk - ek’)(l — cos 9)1
¥

where £ is the reduced Planck constant; Ny is the number of k-points; Q is the unit
cell volume; (e, — &) is Dirac delta function to ensure the energy conservation for
elastic scattering events; 6 is the scattering angle between the states k and k'; the
summation runs over all available final states. Herein, the acoustic phonon
scattering was modeled by the deformation potential (DP) theory*?, under which
the scattering matrix element can be expressed as

2
Mk, K= 2 TEL

(11)

(12)
n

where kg is Boltzmann constant; E; is the DP constant, and C; (ii = aa, bb and cc)
is the elastic constant (Supplementary Table 1). Both the DP constant and elastic
constant were evaluated from first-principles calculations. The elastic constant was
calculated by stretching the unit cell along the crystal axes a, b, and ¢ directions
separately by +0.5% and +1.0%, and then fitting the total energy, E, of deformed
lattice with respect to the dilation, Al/l, via the formula,
(E — E,)/Qqy = C;(Al/1))* /2, where E, and I, are the total energy and lattice
parameter at equilibrium, respectively; Al is the change of lattice parameters. To
evaluate the hole DP constant, we calculated the band energies with the lattice
deformed, and then fit the valence band maximum (VBM) to the dilation, Al/l, via
the formula, E; = AEyp/(Al/l,), where, AEypy; is the position change of VBM
with the lattice deformation. The lowest energy level was assumed to be the energy
reference point4l.

The Brooks-Herring approach*? was adopted to model the screened Coulomb
scattering caused by the ionized impurities, under which the scattering matrix
element has the form

“1(‘113)2

|M(k, )=
0ee0)* (15> + K — kF)

2 (13)

where ny is the randomly located scattering centers per unit cell; g; is the charge of
impurities; e is the elementary charge; L, = \/¢,6,kg T/(€2Ny,) is the Debye
screening length; Ny, is the hole concentration; €, is the relative dielectric constants of a
material, and & is the dielectric constants of vacuum (=8.85 x 10712 C2N—1m~2).
The relative dielectric constants of P3HT was set to be 3.50 (ref. 43). The relaxation
times were derived from the revised BoltzTraP code?.

The acoustic phonon and ionized impurity scattering times are 203 and 106 fs,
respectively, at hole concentration of 1020 cm™3 at room temperature. So the
impurity scattering plays a dominant role for P3HT.

Data availability
Any of the data used generated via simulations can be provided by the authors upon
email request to the corresponding authors.

Code availability

Any of the code that we have used for our conclusions can be provided by the authors
upon email request to the corresponding authors. Basic parts of the MATLAB code is
shown in Supplementary Note 4.
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