1,660 research outputs found

    Peripheral ammonia and blood brain barrier structure and function after methamphetamine

    Get PDF
    An effect of the widely abuse psychostimulant, methamphetamine (Meth), is blood-brain-barrier (BBB) disruption; however, the mechanism by which Meth causes BBB disruption remains unclear. Recently it has been shown that Meth produces liver damage and consequent increases in plasma ammonia. Ammonia can mediate oxidative stress and inflammation, both of which are known to cause BBB disruption. Therefore, the current studies examined the role of peripheral ammonia in Meth-induced disruption of BBB structure and function. A neurotoxic Meth regimen (10 mg/kg, ip, q 2 h, ×4) administered to rats increased plasma ammonia and active MMP-9 in the cortex 2 h after the last Meth injection, compared to saline treated rats. At 24 h after Meth treatment, decreased immunoreactivity of BBB structural proteins, occludin and claudin-5, and increased extravasation of 10,000 Da FITC-dextran were observed, as compared to saline controls. Pretreatment with lactulose (5.3 g/kg, po, q 12 h), a drug that remains in the lumen of the intestine and promotes ammonia excretion, prevented the Meth-induced increases in plasma ammonia. These results were paralleled by the prevention of decreases in BBB structural proteins, increases in extravasation of 10,000 Da FITC-dextran and increases in active MMP-9. The results indicate that Meth-induced increases in ammonia produce BBB disruption and suggest that MMP-9 activation mediates the BBB disruption. These findings identify a novel mechanism of Meth-induced BBB disruption that is mediated by plasma ammonia and are the first to identify a peripheral contribution to Meth-induced BBB disruption

    Integrating biological data into ocean observing systems: the future role of OBIS

    Get PDF
    The future data needs of ocean science and ocean resource management will require a more seamless and accessible coupling of biological data with physical oceanographic processes. This bio-physical data framework will be built through the active integration of data from an extensive variety of sensors, observers, platforms and data archives across a wide range of space and time scales. This necessary synthesis of raw biological data into useful information and potentially new understanding is dependent on both new developments in ocean exploration as well as developments in information systems and informatics. The Ocean Biogeographic Information System (OBIS) is poised to play a significant and expanding role in the evolving ocean observation system

    Upper critical dimension, dynamic exponent and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation

    Full text link
    We study the mode-coupling approximation for the KPZ equation in the strong coupling regime. By constructing an ansatz consistent with the asymptotic forms of the correlation and response functions we determine the upper critical dimension d_c=4, and the expansion z=2-(d-4)/4+O((4-d)^2) around d_c. We find the exact z=3/2 value in d=1, and estimate the values 1.62, 1.78 for z, in d=2,3. The result d_c=4 and the expansion around d_c are very robust and can be derived just from a mild assumption on the relative scale on which the response and correlation functions vary as z approaches 2.Comment: RevTex, 4 page

    Quantized Scaling of Growing Surfaces

    Full text link
    The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact field-theoretic methods. From previous numerical results, a few qualitative assumptions are inferred. In particular, height correlations should satisfy an operator product expansion and, unlike the correlations in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition on the roughness exponent χ\chi and the dynamic exponent zz. Hence the exact values χ=2/5,z=8/5\chi = 2/5, z = 8/5 for two-dimensional and χ=2/7,z=12/7\chi = 2/7, z = 12/7 for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure

    Coupled non-equilibrium growth equations: Self-consistent mode coupling using vertex renormalization

    Get PDF
    We find that studying the simplest of the coupled non-equilibrium growth equations of Barabasi by self-consistent mode coupling requires the use of dressed vertices. Using the vertex renormalization, we find a roughness exponent which already in the leading order is quite close to the numerical value.Comment: 7 pages, 3 figure

    On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion

    Full text link
    It is shown by the method of renormalized field theory that in contrast to a statement based on a mathematically ill-defined invariance transformation and found in most of the recent publications on growth models with surface diffusion, the coupling constant of these models renormalizes nontrivially. This implies that the widely accepted supposedly exact scaling exponents are to be corrected. A two-loop calculation shows that the corrections are small and these exponents seem to be very good approximations.Comment: 4 pages, revtex, 2 postscript figures, to appear in Phys.Rev.Let

    A feasibility study of pre-sleep audio and visual alpha brain entrainment for people with chronic pain and sleep disturbance

    Get PDF
    Introduction: Chronic pain and sleep disturbance are bi-directionally related. Cortical electrical activity in the alpha frequency band can be enhanced with sensory stimulation via the phenomenon of entrainment, and may reduce pain perception. A smartphone based programme which delivers 10Hz stimulation through flickering light or binaural beats was developed for use at night, pre-sleep, with the aim of improving night time pain and sleep and thereby subsequent pain and related daytime symptoms. The aim of this study was to assess the feasibility and give an indication of effect of this programme for individuals with chronic pain and sleep disturbance. Materials and methods: In a non-controlled feasibility study participants used audio or visual alpha entrainment for 30 minutes pre-sleep each night for 4 weeks, following a 1 week baseline period. The study was pre-registered at ClinicalTrials.gov with the ID NCT04176861. Results: 28 participants (79% female, mean age 45 years) completed the study with high levels of data completeness (86%) and intervention adherence (92%). Daily sleep diaries showed an increase compared to baseline in total sleep time of 29 minutes (p=0.0033), reduction in sleep onset latency of 13 minutes (p=0.0043), and increase in sleep efficiency of 4.7% (p=0.0009). Daily 0-10 numerical rating scale of average pain at night improved by 0.5 points compared to baseline (p=0.027). Standardised questionnaires showed significant within-participant improvements in sleep quality (change in median Global PSQI from 16 to 12.5), pain interference (change in median BPI Pain Interference from 7.5 to 6.8), fatigue (change in median MFI total score from 82.5 to 77), and depression and anxiety (change in median HADS depression score from 12 to 10.5 and anxiety from 13.5 to 11). Discussion: Pre-sleep use of a smartphone programme for alpha entrainment by audio or visual stimulation was feasible for individuals with chronic pain and sleep disturbance. The effect on symptoms requires further exploration in controlled studies

    Energy Barriers for Flux Lines in 3 Dimensions

    Full text link
    I determine the scaling behavior of the free energy barriers encountered by a flux line in moving through a three-dimensional random potential. A combination of numerical simulations and analytic arguments suggest that these barriers scale with the length of the line in the same way as the fluctuation in the free energy.Comment: 12 pages Latex, 4 postscript figures tarred, compressed, uuencoded using `uufiles', coming with a separate fil

    Collective Behavior of Asperities in Dry Friction at Small Velocities

    Full text link
    We investigate a simple model of dry friction based on extremal dynamics of asperities. At small velocities, correlations develop between the asperities, whose range becomes infinite in the limit of infinitely slow driving, where the system is self-organized critical. This collective phenomenon leads to effective aging of the asperities and results in velocity dependence of the friction force in the form F1exp(1/v)F\sim 1- \exp(-1/v).Comment: 7 pages, 8 figures, revtex, submitted to Phys. Rev.
    corecore