25,387 research outputs found
Von Neumann Regular Cellular Automata
For any group and any set , a cellular automaton (CA) is a
transformation of the configuration space defined via a finite memory set
and a local function. Let be the monoid of all CA over .
In this paper, we investigate a generalisation of the inverse of a CA from the
semigroup-theoretic perspective. An element is von
Neumann regular (or simply regular) if there exists
such that and , where is the composition of functions. Such an
element is called a generalised inverse of . The monoid
itself is regular if all its elements are regular. We
establish that is regular if and only if
or , and we characterise all regular elements in
when and are both finite. Furthermore, we study
regular linear CA when is a vector space over a field ; in
particular, we show that every regular linear CA is invertible when is
torsion-free elementary amenable (e.g. when ) and , and that every linear CA is regular when
is finite-dimensional and is locally finite with for all .Comment: 10 pages. Theorem 5 corrected from previous versions, in A.
Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata
and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer,
201
On a new fixed point of the renormalization group operator for area-preserving maps
The breakup of the shearless invariant torus with winding number
is studied numerically using Greene's residue criterion in
the standard nontwist map. The residue behavior and parameter scaling at the
breakup suggests the existence of a new fixed point of the renormalization
group operator (RGO) for area-preserving maps. The unstable eigenvalues of the
RGO at this fixed point and the critical scaling exponents of the torus at
breakup are computed.Comment: 4 pages, 5 figure
Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow
Finite Larmor radius (FLR) effects on non-diffusive transport in a
prototypical zonal flow with drift waves are studied in the context of a
simplified chaotic transport model. The model consists of a superposition of
drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow
perpendicular to the density gradient. High frequency FLR effects are
incorporated by gyroaveraging the ExB velocity. Transport in the direction of
the density gradient is negligible and we therefore focus on transport parallel
to the zonal flows. A prescribed asymmetry produces strongly asymmetric non-
Gaussian PDFs of particle displacements, with L\'evy flights in one direction
but not the other. For zero Larmor radius, a transition is observed in the
scaling of the second moment of particle displacements. However, FLR effects
seem to eliminate this transition. The PDFs of trapping and flight events show
clear evidence of algebraic scaling with decay exponents depending on the value
of the Larmor radii. The shape and spatio-temporal self-similar anomalous
scaling of the PDFs of particle displacements are reproduced accurately with a
neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma
Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence
Bursty transport phenomena associated with convective motion present
universal statistical characteristics among different physical systems. In this
letter, a stochastic univariate model and the associated probability
distribution function for the description of bursty transport in plasma
turbulence is presented. The proposed stochastic process recovers the universal
distribution of density fluctuations observed in plasma edge of several
magnetic confinement devices and the remarkable scaling between their skewness
and kurtosis . Similar statistical characteristics of variabilities have
been also observed in other physical systems that are characterized by
convection such as the X-ray fluctuations emitted by the Cygnus X-1 accretion
disc plasmas and the sea surface temperature fluctuations.Comment: 10 pages, 5 figure
- …
