470 research outputs found
An Investigation on Cooling of CZT Co-Planar Grid Detectors
The effect of moderate cooling on CdZnTe semiconductor detectors has been
studied for the COBRA experiment. Improvements in energy resolution and low
energy threshold were observed and quantified as a function of temperature.
Leakage currents are found to contribute typically 5 keV to the widths of
photopeaks.Comment: 14 pages, 9 figures. Accepted for publication in Nuclear Inst. and
Methods in Physics Research,
Geometrically Induced Multiple Coulomb Blockade Gaps
We have theoretically investigated the transport properties of a ring-shaped
array of small tunnel junctions, which is weakly coupled to the drain
electrode. We have found that the long range interaction together with the
semi-isolation of the array bring about the formation of stable standing
configurations of electrons. The stable configurations break up during each
transition from odd to even number of trapped electrons, leading to multiple
Coulomb blockade gaps in the the characteristics of the system.Comment: 4 Pages (two-columns), 4 Figures, to be published in Physical Review
Letter
Interplay between Coulomb Blockade and Resonant Tunneling studied by the Keldysh Green's Function Method
A theory of tunneling through a quantum dot is presented which enables us to
study combined effects of Coulomb blockade and discrete energy spectrum of the
dot. The expression of tunneling current is derived from the Keldysh Green's
function method, and is shown to automatically satisfy the conservation at DC
current of both junctions.Comment: 4 pages, 3 figures(mail if you need), use revtex.sty, error
corrected, changed titl
Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions
We study a 1-D array of Josephson coupled superconducting grains with kinetic
inductance which dominates over the Josephson inductance. In this limit the
dynamics of excess Cooper pairs in the array is described in terms of charge
solitons, created by polarization of the grains. We analyze the dynamics of
these topological excitations, which are dual to the fluxons in a long
Josephson junction, using the continuum sine-Gordon model. We find that their
classical relativistic motion leads to saturation branches in the I-V
characteristic of the array. We then discuss the semi-classical quantization of
the charge soliton, and show that it is consistent with the large kinetic
inductance of the array. We study the dynamics of a quantum charge soliton in a
ring-shaped array biased by an external flux through its center. If the
dephasing length of the quantum charge soliton is larger than the circumference
of the array, quantum phenomena like persistent current and coherent current
oscillations are expected. As the characteristic width of the charge soliton is
of the order of 100 microns, it is a macroscopic quantum object. We discuss the
dephasing mechanisms which can suppress the quantum behaviour of the charge
soliton.Comment: 26 pages, LaTex, 7 Postscript figure
A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes
Various double beta decay modes of Cd, Zn and Te isotopes are explored with
the help of CdTe and CdZnTe semiconductor detectors. The data set is splitted
in an energy range below 1 MeV having a statistics of 134.5 gd and one
above 1 MeV resulting in 532 gd. No signals were observed in all
channels under investigation. New improved limits for the neutrinoless double
beta decay of Zn70 of (90% CL), the longest
standing limit of all double beta isotopes, and 0EC of Te120 of
(90% CL) are given. For the first time a
limit on the half-life of the 2ECEC of Te of (90% CL) is obtained. In addition, limits on 2ECEC for ground
state transitions of Cd106, Cd108 and Zn64 are improved. The obtained results
even under rough background conditions show the reliability of CdTe
semiconductor detectors for rare nuclear decay searches.Comment: Extended introduction and summar
Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles
We present a microscopic theory of single-electron tunneling through metallic
nanoparticles connected to the electrodes through molecular bridges. It
combines the theory of electron transport through molecular junctions with the
description of the charging dynamics on the nanoparticles. We apply the theory
to study single-electron tunneling through a gold nanoparticle connected to the
gold electrodes through two representative benzene-based molecules. We
calculate the background charge on the nanoparticle induced by the charge
transfer between the nanoparticle and linker molecules, the capacitance and
resistance of molecular junction using a first-principles based Non-Equilibrium
Green's Function theory. We demonstrate the variety of transport
characteristics that can be achieved through ``engineering'' of the
metal-molecule interaction.Comment: To appear in Phys. Rev.
On Uniqueness of the Jump Process in Quantum Measurement Theory
We prove that, contrary to the standard quantum theory of continuous
observation, in the formalism of Event Enhanced Quantum Theory the stochastic
process generating individual sample histories of pairs (observed quantum
system, observing classical apparatus) is unique. This result gives a rigorous
basis to the previous heuristic argument of Blanchard and Jadczyk. Possible
implications of this result are discussed.Comment: 31 pages, LaTeX, article; e-mail contact [email protected]
Zero Frequency Current Noise for the Double Tunnel Junction Coulomb Blockade
We compute the zero frequency current noise numerically and in several limits
analytically for the coulomb blockade problem consisting of two tunnel
junctions connected in series. At low temperatures over a wide range of
voltages, capacitances, and resistances it is shown that the noise measures the
variance in the number of electrons in the region between the two tunnel
junctions. The average current, on the other hand, only measures the mean
number of electrons. Thus, the noise provides additional information about
transport in these devices which is not available from measuring the current
alone.Comment: 33 pages, 10 figure
Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum
We have measured the cosmic ray spectrum at energies above eV using
the two air fluorescence detectors of the High Resolution Fly's Eye experiment
operating in monocular mode. We describe the detector, PMT and atmospheric
calibrations, and the analysis techniques for the two detectors. We fit the
spectrum to models describing galactic and extragalactic sources. Our measured
spectrum gives an observation of a feature known as the ``ankle'' near eV, and strong evidence for a suppression near eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio
- …