17,295 research outputs found

    A New Template Family For The Detection Of Gravitational Waves From Comparable Mass Black Hole Binaries

    Full text link
    In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various re-summation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on re-expressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all PN orders and provide excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the Last Stable Orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.Comment: Final published version. Accepted for publication in Phys. Rev.

    Searching for Massive Black Hole Binaries in the first Mock LISA Data Challenge

    Full text link
    The Mock LISA Data Challenge is a worldwide effort to solve the LISA data analysis problem. We present here our results for the Massive Black Hole Binary (BBH) section of Round 1. Our results cover Challenge 1.2.1, where the coalescence of the binary is seen, and Challenge 1.2.2, where the coalescence occurs after the simulated observational period. The data stream is composed of Gaussian instrumental noise plus an unknown BBH waveform. Our search algorithm is based on a variant of the Markov Chain Monte Carlo method that uses Metropolis-Hastings sampling and thermostated frequency annealing. We present results from the training data sets and the blind data sets. We demonstrate that our algorithm is able to rapidly locate the sources, accurately recover the source parameters, and provide error estimates for the recovered parameters.Comment: 11 pages, 6 figures, Submitted to CQG proceedings of GWDAW 11, AEI, Germany, Dec 200

    Performing against the odds: developmental trajectories of children in the EPPSE 3 to 16 study

    Get PDF
    The Effective Pre-School, Primary and Secondary Education (EPPSE 3 to 16) research project is a large scale, longitudinal, mixed-methods research that is following the progress of 3,000 children since 1997 from the age of 3- to 16-years-old. A focus for EPPSE has been the extent to which pre-school, compulsory education and children’s home learning experiences (HLE) can reduce inequality. Earlier EPPSE found that what parents did with their children was important in terms of the children’s outcomes, not simply ‘who they were’ in terms of social class and income. Following a pilot study with disadvantaged children who were ‘succeeding against the odds’ towards the end of primary school, this study provides in-depth exploration and explanation of how risks and protective factors in the lives of children shape their learning life-courses, and why they lead to academic resilience for some but not for others
    • …
    corecore