8 research outputs found

    Contribution à la conception de synthÚses de fréquence pour liaison satellite embarquée: montée en résolution et réduction de raies parasites

    Get PDF
    Be connected to broadband WEB in flight is a trade issue which has motivated the launch of a project named FAST (Fiber-like Aircraft Satellite Communications). Under this project, Axess-Europe company with seven other partners including LAAS-CNRS, worked on the design of an active phased-array antenna with an electronically controlled beam steering. This thesis deals with the frequency synthesis of the antenna transceiver. In order to be able to connect to different satellites with their own frequency map, and also compensate for the Doppler effect to a certain extent, this focuses on the increase of the frequency resolution of a PLL (Phase-Locked Loop) using a fractional-N frequency divider. When considering a PLL, a fractional-N divider offers several advantages: increase frequency resolution without decreasing the reference frequency, and thus allows to keep the loop dynamic, as well as bandwidth and phase noise performances. However, fractional-N division generates spurious, which can yet be reduced by different well known techniques. Among these techniques, the DDS (Direct Digital Synthesizer) can be used as a fractional-N divider, but the increase of its frequency resolution would dramatically increase its size. So we designed a variant DDS-based topology, which allows to keep the advantage of the DDS in spurious reduction while increasing its frequency resolution without increasing its size. A comprehensive study of this novel structure is proposed.Être connectĂ© en haut dĂ©bit au WEB Ă  bord des avions est un marchĂ© Ă  fort potentiel commercial qui a motivĂ© le lancement d'un projet nommĂ© FAST (Fiber-like Aircraft SaTellite communications). Dans le cadre de ce projet, la sociĂ©tĂ© Axess Europe, en partenariat avec sept partenaires dont le LAAS-CNRS a dĂ©veloppĂ© une antenne plane Ă  matrice d'Ă©lĂ©ments rayonnants dont l'orientation du faisceau est gĂ©rĂ©e Ă©lectroniquement. Cette antenne permet la communication avion-satellite. Cette thĂšse traite de la partie synthĂšse de frĂ©quence de l'Ă©lectronique d'Ă©mission-rĂ©ception de l'antenne. Afin de pouvoir s'adapter Ă  n'importe plan de frĂ©quence de satellite, mais aussi la volontĂ© de pouvoir compenser l'effet Doppler dans une certaine mesure, ces travaux se sont tournĂ©s vers l'amĂ©lioration de la rĂ©solution d'une boucle Ă  verrouillage de phase (PLL), et plus particuliĂšrement sur l'Ă©tude et la rĂ©alisation d'un diviseur de frĂ©quence fractionnaire capable de satisfaire ces exigences. Dans une PLL, la division fractionnaire permet d'augmenter la rĂ©solution frĂ©quentielle sans devoir diminuer la frĂ©quence de rĂ©fĂ©rence, ce qui permet de conserver la dynamique de boucle, la bande passante ainsi que les caractĂ©ristiques en bruit de phase. Cependant, elle gĂ©nĂšre des raies parasites gĂȘnantes, que l'on peut toutefois attĂ©nuer avec plusieurs techniques bien connues. Parmi ces techniques, on trouve le DDS (synthĂ©tiseur numĂ©rique direct) utilisĂ© comme diviseur fractionnaire, mais il ne permet d'atteindre la rĂ©solution frĂ©quentielle souhaitĂ©e que pour une taille trop importante. Nous avons donc dĂ©veloppĂ© une variante basĂ©e sur un DDS qui permet d'en conserver les avantages pour la rĂ©duction des raies parasites, tout en augmentant la rĂ©solution frĂ©quentielle sans devoir en augmenter la taille. Une Ă©tude exhaustive de cette structure originale est proposĂ©e

    Convertisseur phase/amplitude sinusoïdal et gaussien pour synthétiseur digital direct basse consommation ultra rapide

    No full text
    National audienceUn Ă©tage diffĂ©rentiel capable de mettre en forme des signaux gaussiens aussi bien que sinusoĂŻdaux est proposĂ© comme alternative dans les architectures de DDS basse consommation ultra rapides. Il a permis la conception d'un DDS fonctionnant jusqu'Ă  20GHz, avec une rĂ©solution de 9bits en frĂ©quence et de 8bits en amplitude, sur une technologie SiGe BiCMOS 0,13”m de ft/fmax Ă©gal Ă  200/250GHz. Il conduit Ă  un SFDR de −44,5dBc en mode sinusoĂŻdal et un SLRR de −43,5dBc en mode gaussien

    A both Gaussian and sinusoidal phase-to-amplitude converter for low-power ultra-high-speed direct digital synthesizers

    No full text
    International audienceThis paper introduces a new bipolar differential pair topology for both Gaussian and sinusoidal signal shaping, to be used as a phase-to-amplitude converter alternative in low-power ultra-high-speed DDS. A DDS using this converter, with a 9-bit frequency resolution and an 8-bit amplitude resolution has been designed in a 0.13 ÎŒm SiGe BiCMOS technology, with ft/fmax of 200/250 GHz, and simulated up to a 20 GHz operating clock frequency. It consumes 585 mW under a 2.8 V power supply. Simulated triangle shape allows an optimal SFDR of -44.5 dBc in sinus mode and a SLRR of -43.5 dBc in Gaussian mode

    A Baseband Ultra-Low Noise SiGe:C BiCMOS 0.25 ”m Amplifier And Its Application For An On-Chip Phase-Noise Measurement Circuit

    No full text
    4 pagesInternational audienceThe design and realization of an ultra-low noise operational amplifier is presented. Its applications are integrated low-frequency noise measurements in electronic devices and on-chip phase-noise measurement circuit. This paper discusses the SiGe:C BiCMOS 0.25 ”m design improvements used for low noise applications. The proposed three-stage operational amplifier uses parallel bipolar transistor connection as input differential pair for low noise behavior. This operational amplifier provides both low noise and high gain performances. This operational amplifier has an area of only 660x250 ”m2 with an equivalent input noise floor of only 1.1 nV/√Hz at 10 kHz. The measured noise characteristics (versus total power consumption) are better than those of most operational amplifiers commonly adopted in low-frequency noise measurements. The AC gain is 83 dB and the unity gain bandwidth is 210 MHz, with a total current consumption of 18 mA at 2.5 V supply voltage

    A Low Phase Noise and Wide-Bandwidth BiCMOS SiGe:C 0.25”m Digital Frequency Divider For An On-Chip Phase-Noise Measurement Circuit

    No full text
    4 pagesInternational audienceA low phase noise and wide-bandwidth frequency divider has been developed in a 0.25 ”m SiGe:C process. This paper discusses the BiCMOS design improvements used for ultra low phase noise applications like on-chip phase-noise measurement circuit. From a single-ended signal provided by a local oscillator LO, the wide-bandwidth frequency divider circuit generates accurate quadrature signals. For the full 1kHz-5.5 GHz input frequency range, the frequency divider achieves an output quadrature error less than ±1°. This paper presents a novel architecture designed for improving phase noise and exhibits a measured residual phase noise of -164 dBc/Hz @ 100 kHz with a 3.5 GHz input frequency

    Diviseur de fréquence SiGe:C 0,25 ”m, large bande et faible bruit, pour banc de mesure de bruit de phase intégré

    No full text
    La conception, la rĂ©alisation et la caractĂ©risation d'un diviseur de frĂ©quence par 2, large bande et faible bruit de phase est prĂ©sentĂ©e. L'application ciblĂ©e est un banc de mesure de bruit de phase totalement intĂ©grĂ©. Le diviseur de frĂ©quence sert Ă  fournir des signaux de rĂ©fĂ©rence en quadrature, sur la bande [1 kHz ; 5,5 GHz]. Ainsi, une erreur de quadrature infĂ©rieure Ă  ± 1° a Ă©tĂ© mesurĂ©e sur toute la bande, avec un bruit de phase rĂ©siduel de seulement −164 dBc/Hz Ă  100 kHz de la porteuse de 3,5 GHz

    A Low Spurious Level Fractional-N Frequency Divider Based on a DDS-like Phase Accumulation Operation

    No full text
    International audienceThis paper presents a novel architecture of a low spurious level fractional-N frequency divider. It has already been shown in previous work that the use of a direct digital synthesizer (DDS) represents a promising solution to the mitigation of the fractional spurs that appear at the output of fractional frequency dividers, but with the drawback of causing a non-linear control of the division ratio. The DDS-based architecture proposed in this paper recovers the benefit of having a linear tuning of the division ratio, while still having similar performance in terms of fractional spurs

    A Low Phase Noise and Wide-Bandwidth BiCMOS SiGe:C 0.25”m Digital Frequency Divider For An On-Chip Phase-Noise Measurement Circuit

    No full text
    4 pagesInternational audienceA low phase noise and wide-bandwidth frequency divider has been developed in a 0.25 ”m SiGe:C process. This paper discusses the BiCMOS design improvements used for ultra low phase noise applications like on-chip phase-noise measurement circuit. From a single-ended signal provided by a local oscillator LO, the wide-bandwidth frequency divider circuit generates accurate quadrature signals. For the full 1kHz-5.5 GHz input frequency range, the frequency divider achieves an output quadrature error less than ±1°. This paper presents a novel architecture designed for improving phase noise and exhibits a measured residual phase noise of -164 dBc/Hz @ 100 kHz with a 3.5 GHz input frequency
    corecore