849 research outputs found

    Methane dynamics in different boreal lake types

    Get PDF
    This study explores the variability in concentrations of dissolved CH<sub>4</sub> and annual flux estimates in the pelagic zone in a statistically defined sample of 207 lakes in Finland. The lakes were situated in the boreal zone, in an area where the mean annual air temperature ranges from −2.8 to 5.9°C. We examined how lake CH<sub>4</sub> dynamics related to regional lake types assessed according to the EU water framework directive. Ten lake types were defined on the basis of water chemistry, color, and size. Lakes were sampled for dissolved CH<sub>4</sub> concentrations four times per year, at four different depths at the deepest point of each lake. We found that CH<sub>4</sub> concentrations and fluxes to the atmosphere tended to be high in nutrient rich calcareous lakes, and that the shallow lakes had the greatest surface water concentrations. Methane concentration in the hypolimnion was related to oxygen and nutrient concentrations, and to lake depth or lake area. The surface water CH<sub>4</sub> concentration was related to the depth or area of lake. Methane concentration close to the bottom can be viewed as proxy of lake status in terms of frequency of anoxia and nutrient levels. The mean pelagic CH<sub>4</sub> release from randomly selected lakes was 49 mmol m<sup>−2</sup> a<sup>−1</sup>. The sum CH<sub>4</sub> flux (storage and diffusion) correlated with lake depth, area and nutrient content, and CH<sub>4</sub> release was greatest from the shallow nutrient rich and humic lakes. Our results support earlier lake studies regarding the regulating factors and also the magnitude of global emission estimate. These results propose that in boreal region small lakes have higher CH<sub>4</sub> fluxes per unit area than larger lakes, and that the small lakes have a disproportionate significance regarding to the CH<sub>4</sub> release

    Lakes as nitrous oxide sources in the boreal landscape

    Get PDF
    Abstract Estimates of regional and global freshwater N2O emissions have remained inaccurate due to scarce data and complexity of the multiple processes driving N2O fluxes the focus predominantly being on summer time measurements from emission hot spots, agricultural streams. Here we present four-season data of N2O concentrations in the water columns of randomly selected boreal lakes covering a large variation in latitude, lake type, area, depth, water chemistry and land use cover. Nitrate was the key driver for N2O dynamics, explaining as much as 78% of the variation of the seasonal mean N2O concentrations across all lakes. Nitrate concentrations varied among seasons being highest in winter and lowest in summer. Of the surface water samples 71% were oversaturated with N2O relative to the atmosphere. Largest oversaturation was measured in winter and lowest in summer stressing the importance to include full year N2O measurements in annual emission estimates. Including winter data resulted in four-fold annual N2O emission estimates compared to summer only measurements. Nutrient rich calcareous and large humic lakes had the highest annual N2O emissions. Our emission estimates for Finnish and boreal lakes are 0.6 Gg and 29 Gg N2O-N y-1, respectively. The Global Warming Potential (GWP) of N2O cannot be neglected in the boreal landscape, being 35% of that of diffusive CH4 emission in Finnish lakes.peerReviewe

    Rising methane emissions from boreal lakes due to increasing ice-free days

    Get PDF
    Lakes account for about 10% of the boreal landscape and are responsible for approximately 30% of biogenic methane emissions that have been found to increase under changing climate. However, the quantification of this climate-sensitive methane source is fraught with large uncertainty under warming climate conditions. Only a few studies have addressed the mechanism of climate impact on the increase of northern lake methane emissions. This study uses a large observational dataset of lake methane concentrations in Finland to constrain methane emissions with an extant process-based lake biogeochemical model. We found that the total current diffusive emission from Finnish lakes is 0.12 +/- 0.03 Tg CH4 yr(-1) and will increase by 26%-59% by the end of this century depending on different warming scenarios. We discover that while warming lake water and sediment temperature plays an important role, the climate impact on ice-on periods is a key indicator of future emissions. We conclude that these boreal lakes remain a significant methane source under the warming climate within this century.peerReviewe

    Online searches of children's oseltamivir in public primary and specialized care : Detecting influenza outbreaks in Finland using dedicated databases for health care professionals

    Get PDF
    Publisher Copyright: © 2022 Mukka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction Health care professionals working in primary and specialized care typically search for medical information from Internet sources. In Finland, Physician’s Databases are online portals aimed at professionals seeking medical information. As dosage errors may occur when prescribing medication to children, professionals’ need for reliable medical information has increased in public health care centers and hospitals. Influenza continues to be a public health threat, with young children at risk of developing severe illness and easily transmitting the virus. Oseltamivir is used to treat children with influenza. The objective of this study was to compare searches for children’s oseltamivir and influenza diagnoses in primary and specialized care, and to determine if the searches could aid detection of influenza outbreaks. Methods We compared searches in Physician’s Databases for children’s oral suspension of oseltamivir (6 mg/mL) for influenza diagnoses of children under 7 years and laboratory findings of influenza A and B from the National Infectious Disease Register. Searches and diagnoses were assessed in primary and specialized care across Finland by season from 2012–2016. The Moving Epidemic Method (MEM) calculated seasonal starts and ends, and paired differences in the mean compared two indicators. Correlation was tested to compare seasons. Results We found that searches and diagnoses in primary and specialized care showed visually similar patterns annually. The MEM-calculated starting weeks in searches appeared mainly in the same week. Oseltamivir searches in primary care preceded diagnoses by −1.0 weeks (95% CI: −3.0, −0.3; p = 0.132) with very high correlation (τ = 0.913). Specialized care oseltamivir searches and diagnoses correlated moderately (τ = 0.667). Conclusion Health care professionals’ searches for children’s oseltamivir in online databases linked with the registers of children’s influenza diagnoses in primary and specialized care. Therefore, database searches should be considered as supplementary information in disease surveillance when detecting influenza epidemics.Peer reviewe

    Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    Full text link
    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    First observation of excited states in 173Hg

    Full text link
    The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.Comment: 5 pages, 4 figure

    Search for Fingerprints of Tetrahedral Symmetry in 156Gd^{156}Gd

    Full text link
    Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in 156Gd^{156}Gd. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in 156Gd^{156}Gd.Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages, minor corrections. To be published in the proceeding

    Parkinson's disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disease inducing dystrophy of the motor system. Automatic movement analysis systems have potential in improving patient care by enabling personalized and more accurate adjust of treatment. These systems utilize machine learning to classify the movement properties based on the features derived from the signals. Smartphones can provide an inexpensive measurement platform with their built-in sensors for movement assessment. This study compared three feature selection and nine classification methods for identifying PD patients from control subjects based on accelerometer and gyroscope signals measured with a smartphone during a 20-step walking test. Minimum Redundancy Maximum Relevance (mRMR) and sequential feature selection with both forward (SFS) and backward (SBS) propagation directions were used in this study. The number of selected features was narrowed down from 201 to 4-15 features by applying SFS and mRMR methods. From the methods compared in this study, the highest accuracy for individual steps was achieved with SFS (7 features) and Naive Bayes classifier (accuracy 75.3%), and the second highest accuracy with SFS (4 features) and k Nearest neighbours (accuracy 75.1%). Leave-one-subject-out cross-validation was used in the analysis. For the overall classification of each subject, which was based on the majority vote of the classified steps, k Nearest Neighbors provided the most accurate result with an accuracy of 84.5% and an error rate of 15.5%. This study shows the differences in feature selection methods and classifiers and provides generalizations for optimizing methodologies for smartphone-based monitoring of PD patients. The results are promising for further developing the analysis system for longer measurements carried out in free-living conditions

    Level structure of 99Nb

    Get PDF
    The ÎČ decay of 97Sr to 97Y has been investigated using ion-guide on-line mass separation and a 10 Ge-detector array to record γ−γ coincidences to a detection limit well below that of former studies. Similarities are found in the ÎČ-decay patterns of 99Zr and of its isotone 97Sr and also in the Îł-ray decay rates and branchings of the corresponding levels in their respective daughters 99Nb and 97Y. This indicates a persisting influence of the d5/2 neutron shell closure for 99Nb. The level structure of 99Nb and the ÎČ-feeding pattern are discussed in the frame of the interacting boson-fermion plus broken pair model and the microscopic quasiparticle phonon model
    • 

    corecore