55 research outputs found

    Current density distribution in cylindrical Li-Ion cells during impedance measurements

    Get PDF
    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed

    Comparative Study of Parameter Identification with Frequency and Time Domain Fitting Using a Physics-Based Battery Model

    No full text
    Parameter identification with the pseudo-two-dimensional (p2D) model has been an important research topic in battery engineering because some of the physicochemical parameters used in the model can be measured, while some can only be estimated or calculated based on the measurement data. Various methods, either in the time domain or frequency domain, have been proposed to identify the parameters of the p2D model. While the methods in each domain bring their advantages and disadvantages, a comprehensive comparison regarding parameter identifiability and accuracy is still missing. In this present work, some selected physicochemical parameters of the p2D model are identified in four different cases and with different methods, either only in the time domain or with a combined model. Which parameters are identified in the frequency domain is decided by a comprehensive analysis of the analytical expression for the DRT spectrum. Finally, the parameter identifiability results are analyzed and the validation results with two highly dynamic load profiles are shown and compared. The results indicate that the model with ohmic resistance and the combined method achieves the best performance and the average voltage error is at the level of 12 mV

    Comparative Study of Parameter Identification with Frequency and Time Domain Fitting Using a Physics-Based Battery Model

    No full text
    Parameter identification with the pseudo-two-dimensional (p2D) model has been an important research topic in battery engineering because some of the physicochemical parameters used in the model can be measured, while some can only be estimated or calculated based on the measurement data. Various methods, either in the time domain or frequency domain, have been proposed to identify the parameters of the p2D model. While the methods in each domain bring their advantages and disadvantages, a comprehensive comparison regarding parameter identifiability and accuracy is still missing. In this present work, some selected physicochemical parameters of the p2D model are identified in four different cases and with different methods, either only in the time domain or with a combined model. Which parameters are identified in the frequency domain is decided by a comprehensive analysis of the analytical expression for the DRT spectrum. Finally, the parameter identifiability results are analyzed and the validation results with two highly dynamic load profiles are shown and compared. The results indicate that the model with ohmic resistance and the combined method achieves the best performance and the average voltage error is at the level of 12 mV

    Capacity Recovery Effect in Lithium Sulfur Batteries for Electric Vehicles

    No full text
    Lithium sulfur batteries have a promisingly high theoretical specific energy density of about 2600 Wh/kg and an expected practical specific energy density of about 500–600 Wh/kg. Therefore, it is a highly promising future energy storage technology for electric vehicles. Beside these advantages, this technology shows a low cell capacity at high discharge currents. Due to the capacity recovery effect, up to 20 % of the total cell capacity becomes available again with some rest time. This study shows a newly-developed capacity recovery model for lithium sulfur batteries. Due to the long rest periods of electric vehicles, this effect has an important influence on the usable cell capacity and depth of discharge in lithium sulfur batteries

    A Techno-Economic Analysis of Vehicle-to-Building: Battery Degradation and Efficiency Analysis in the Context of Coordinated Electric Vehicle Charging

    No full text
    In the context of the increased acceptance and usage of EV, V2B has proven to be a new and promising use case. Although this topic is already being discussed in literature, there is still a lack of experience on how such a system, of allowing bidirectional power flows between an EV and building, will work in a residential environment. The challenge is to optimize the interplay of electrical load, PV generation, EV, and optionally a HES. In total, fourteen different scenarios are explored for a German household. A two-step approach is used, which combines a computationally efficient linear optimizer with a detailed modelling of the non-linear effects on the battery. The change in battery degradation, storage system efficiency, and OPEX as a result of different, unidirectional and bidirectional, EV charging schemes is examined for both an EV battery and a HES. The simulations show that optimizing unidirectional charging can improve the OPEX by 15%. The addition of V2B leads to a further 11% cost reduction, however, this corresponds with a 12% decrease in EV battery lifetime. Techno-economic analysis reveals that the V2B charging solution with no HES leads to strong self-consumption improvements (EUR 1381 savings over ten years), whereas, this charging scheme would not be justified for a residential prosumer with a HES (only EUR 160 savings)

    Quasi-Isothermal External Short Circuit Tests Applied to Lithium-Ion Cells: Part I. Measurements

    No full text
    Single-layered pouch-type cells were exposed to quasi-isothermal external short circuit tests to study the influence of electrode loading and tab configuration on the short circuit characteristics. Additionally, test conditions such as initial cell temperature, cell voltage and external short circuit resistance were varied. Keeping the cell’s temperature increase below 1◦C whilst using a calibrated calorimetric setup, a direct correlation between the electrical and thermal behavior could be shown without occurring exothermal side reactions. Previously studied step-like characteristics in the transient current profile could be confirmed for all cells and test conditions, showing differing durations and magnitudes of the observed plateaus based on ohmic resistances, transport processes and reaction kinetics. Lower electrode loadings, counter-tab configurations homogenizing the current density distribution and higher initial cell temperatures accelerate the short circuit by increasing the cell current due to a reduced effective cell resistance. Whilst the chosen initial cell voltages and external short circuit resistances showed a minor impact on the short circuit dynamics, the initial state of charge revealed a noticeable influence defining the discharged capacity and the amount of generated heat. By post mortem analysis, the observed over-discharge could be correlated to an anodic dissolution of the negative electrode’s copper current collector.JRC.C.1-Energy Storag

    Quasi-isothermal external short circuit tests applied to lithium-ion cells: part II. modelling and simulation

    No full text
    Measurement data gained from quasi-isothermal external short circuit tests on single-layered pouch-type Li-ion cells presented in the first part of this combined work was used to validate a well-known homogenized physical-chemical model for different electrode loadings, cell temperatures, initial cell voltages, and external short circuit resistances. Accounting for diffusion-limited reaction kinetics, effective solid phase diffusion coefficients, and one representative active material particle size within each electrode, the model is capable of describing the experimentally observed characteristic change in magnitudes of current and heat generation rate throughout the short circuit. Underlying mechanisms for the observed characteristics are studied by evaluating the predicted concentration distribution across the electrodes and separator and by calculating the cell polarization due to ohmic losses, diffusion processes, and reaction kinetics. The importance of mass transport in the solid and liquid phase limiting reaction kinetics is discussed and evaluated in the context of a sensitivity analysis. Concentration dependent transport properties, electrode tortuosity, particle size, and electrode energy density are affecting different stages of a short circuit. Simulation results suggest a strong impact of electrode design on the short circuit dynamics allowing for an optimization regarding a cell’s energy and power characteristics whilst guaranteeing a high short circuit tolerance.JRC.C.1-Energy Storag
    • …
    corecore