

First International Renewable Energy Storage Conference 30./31. October 2006 Gelsenkirchen/Germany

Advances in Redox-Flow Batteries

Andreas Jossen¹, Dirk Uwe Sauer²

1: Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Helmholtzstrasse 8, 89081 Ulm, Germany

2: RWTH Aachen University / Germany

Contact: andreas.jossen@zsw-bw.de

Overview

- The principle of redox-flow batteries
- Electrochemical systems used for redox-flow batteries
- Characteristics in comparison with other batteries
- State of the art systems
- R&D required
- Costs

Principle of electrochemical storage systems

- 3 -

Principle of redox-flow batteries

Chemical storage unit

- liquid phase
- storage in tanks
- Typically two tanks are required

Converter: electrical into chemical energy

- Electrochemical cells
- To increase the voltage a large number of cells is necessary
 → Stack

Principle of redox-flow batteries

Stack design

- four cells in a bipolar arrangement -

25W

Important Characteristics

- The two components converter (Stack) and the storage (tank) are separate.
- → Flexible sizing, possible, but as the converter is complex and expensive the systems are sized for high energy and low power (C).

The history of redox-flow batteries

- Researche concerning redox-flow battery began in the 70's with the Fe-Ti couple, using FeCl₃ as the oxidising agent and TiCl₂ as the reducing one, both in an alkaline electrolyte.
- > Then Ti²⁺ was replaced by Cr^{2+} , leading to better performances.
- During the 80's, a lot of work have been carried out by the NASA on the Fe-Cr system, as well as on the zinc/alkaline/sodium ferricyanide (Na₃Fe(CN)₆,H₂O) couple.
- > 10 kW systems have been built with the Fe-Cr couple
- Problems of the Fe-Cr system:
 - expensive, ion selective membrane needed
 - high maintenance to avoid clogging up of the membrane
- Other redox-flow systems were developed
- Today we have some manufacturers of redox-flow batteries

Possible chemistries

Half cell voltages and cell voltages

Possible chemistries

Some data from different sources

System	E Cell in V	Current densities in mA/cm ²	Ah efficiency in %	Energy efficiency
Fe/Cr	1.03V	6.5	81	66
Bromine/ Polysulfide	1.53	60	90	67
Vanadium/ Vanadium	1.7	80	90	72

The Vanadium redox flow battery (VRB) - The most common redox flow technology -

PacifiCorp (Moab, Utah) 2MWh VRB-ESS

Pos: $VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$ Neg: $V^{2+} \rightarrow V^{3+} + e^-$

Lifetime: Estimated by more than 10 000 cycles 20 – 80 % dod

Manufacturer / develop companies: VRB Power Systems Inc. (Vancouver, Canada) Sumitomo Electric Industries (Japan) Cellennium limited (Thailand)

ZSW Vanadium redox flow battery

VRB Projects in Japan - Sumitomo Electric -

Place	Applications	Specifications	Start of operation
Office building	Load leveling (Demonstration)	100kW x 8h	2000/02
Semi-conductor factory	 Voltage sag protection Load leveling 	1) 3000kW x 1.5sec. 2) 1500kW x 1h	2001/04
Wind power station	Stabilization of wind turbine output (Field test)	170kW x 6h	2001/04
Golf course	Load leveling (Photovoltaic hybrid system)	30kW x 8h	2001/04
University	Load leveling	500kW x 10h	2001/07

VRB for use in a Remote Area Power Supply - Result of a case study -

Bromine/polysulfide flow battery - The Regenesys-system -

○ Energy efficiency ~ 70 %
○ Estimated costs: 175 €/kWh

Negative: Na₂S₄ \rightarrow 2 Na₂S₂

Positive: 3 NaBr → NaBr₃

Bromine/polysulfide flow battery - The Regenesys-system -

Little Barford, South England 120MWh / 15 MW

The XL-Modules with 100 kW each Total planed: 120 Modules

Project was stopped in Dec. 2003

The zinc / bromine system

Just a "hybrid" redox-flow battery,
As zinc is in the charged state
plated on the negative electrode.
→ Stack size influences
energy content, too.

- Commercialized system by different manufacturers.
- Applications like telecom and ups are known.
- Zinc is critical for lifetime

The cerium / zinc system - Plurion's redox-flow battery -

The bromine is exchanged by cerium. Environmentally friendly System, but only "hybrid system" and limitations by zinc.

1 m² pilot cell, 2002

Electrolyte (solvent): Methane Sulfonic Acid (CH₃SO₃H)

Open circuit voltage: 2.4V Discharge voltage: ~ 2.0V

Costs of redox-flow batteries - Principle -

The vanadium redox-flow system

- a cost estimation for a 2 kW / 30 kWh system-

	Data	cost per unit	Total costs	
Current density	52mA/cm ²			
Electrode area	1.75m²/kW			
V ₂ O ₅ - Energy	6.0kg/kWh			
Activation layer	3.5m²/kW	50 €/m²	350 €	
Bipolar plate		65 €/kW	130 €	
Frame, etc.		435 €/kW	870 €	Converter costs
Membrane	2.1 m² / kW	25 €/m²	105 €)))15 C
Tanks	Each 550 I	185 €each	370 €	- 2315 € - → 1157 €/kW
Pumps		160 € each	320 €	
Control		500 €	500 €)	
V ₂ O ₅	180 kg	8.0 €/kg	1440 €	Storage costs
Electrolyte manuf.		3 €/kg	540 € 〉	2350 €
Tanks	Each 550 I	185 €each	370 €	→ 78 €/ kWh
TOTAL			4665 € → 155 €/ kWh	

According L. Jörissen, ZSW

Vanadium products price variation

Source: Metal Bulletin.

^a Price per pound of contained vanadium, U.S. free market 70-80% V in warehouse, Pittsburgh. ^b Price per pound V₂O₅, Europe, min. 98%.

Publications about redox-flow batteries

Search for "redox flow battery" in the title or the abstract at www.scorpus.com

Important factors

- potential for further improvement -

- Shunt currents (bypass or leakage) result in a reduced efficiency
- Hydraulic characteristic, especially for larger systems is the flow distribution a critical point. Unbalanced cells will generate side products (gasses) what finally will damage the cell and the stack.
- Sealing of large cells/stacks is complex
- Reactant mixing results in reduced cell voltage during discharge.
- lons crossing the membrane result in unwanted species and change of the concentration. A special treatment is necessary to maintain the redox couple concentrated and pure.

Summery

- Different systems are possible and investigated by R&D teams
- All vanadium and zinc/bromine are commercialized
- The flexible independent sizing of storage capability and power is an important advantage in comparison to other battery technologies.
- The most continuous activities are in the all vanadium technology
- The "Regenesys Problem" increases the scepticism in redox flow technology. Finally it shows that commercializing of electrochemical storage systems needs more than a decade.
- The electrolyte costs are strongly related to the raw material costs $(V_2O_5 \text{ changed within months by a factor of 4})$
- Up-scaling from small to large systems is a important but a difficult task. Systems in the 100 MW class are possible.
- Potential for cost reductions are in more efficient electrodes, larger stacks and lower electrolyte manufacturing costs.
- Environmental aspects must be taken into account.

