77 research outputs found

    Its moderately extended low-density halo and its accretion history

    Get PDF
    We present results based on Dark Energy Camera Legacy Survey (DECaLS) DR8 astrometric and photometric data sets of the Milky Way globular cluster Pal 13. Because of its relatively small size and mass, there is not yet a general consensus on the existence of extra-tidal structures surrounding it. While some previous results suggest the absence of such features, others show that the cluster is under the effects of tidal stripping. We have built a cluster stellar density map from DECaLS g, r magnitudes-previously corrected for interstellar reddening-of stars placed along the cluster main sequence in the color-magnitude diagram. The resulting density map shows nearly smooth contours around Pal 13 out to approximately 1.6 t the most recent estimate of its Jacobi radius, which was derived whilst taking into account the variation along its orbital motion. This outcome favors the presence of stars escaping the cluster, a phenomenon frequently seen in globular clusters that have crossed the Milky Way disk a comparably large number of times. Particularly, the orbital high eccentricity and large inclination angle of this accreted globular cluster could have been responsible for the relatively large amount of lost cluster mass.Fil: Piatti, Andres Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Fernández Trincado, José G.. Universidad de Atacama; Chil

    Near-infrared chemical abundances of stars in the Sculptor dwarf galaxy

    Full text link
    Owing to the recent identification of major substructures in our Milky Way (MW), the astronomical community has started to reevaluate the importance of dissolved and existing dwarf galaxies. In this work, we investigate up to 13 elements in 43 giant stars of the Sculptor dwarf galaxy (Scl) using high-signal-to-noise-ratio near-infrared (NIR) APOGEE spectra. Thanks to the strong feature lines in the NIR, we were able to determine high-resolution O, Si, and Al abundances for a large group of sample stars for the first time in Scl. By comparing the [α\alpha/Fe] (i.e., O, Mg, Si, Ca, and Ti) of the stars in Scl, Sagittarius, and the MW, we confirm the general trend that less massive galaxies tend to show lower [α\alpha/Fe]. The low [Al/Fe] (∼−0.5\sim -0.5) in Scl demonstrates the value of this ratio as a discriminator with which to identify stars born in dwarf galaxies (from MW field stars). A chemical-evolution model suggests that Scl has a top-light initial mass function (IMF), with a high-mass IMF power index of ∼−2.7\sim -2.7, and a minimum Type Ia supernovae delay time of ∼100\sim 100 Myr. Furthermore, a linear regression analysis indicates a negative radial metallicity gradient and positive radial gradients for [Mg/Fe] and [Ca/Fe], in qualitative agreement with the outside-in formation scenario.Comment: A&A accepte

    Exploring the short-term variability of Hα\alpha and Hβ\beta emissions in a sample of M dwarfs

    Full text link
    The time scales of variability in active M dwarfs can be related to their various physical parameters. Thus, it is important to understand such variability to decipher the physics of these objects. In this study, we have performed the low resolution (∼\sim5.7\AA) spectroscopic monitoring of 83 M dwarfs (M0-M6.5) to study the variability of Hα\alpha / Hβ\beta emissions; over the time scales from ∼\sim0.7 to 2.3 hours with a cadence of ∼\sim3-10 minutes. Data of a sample of another 43 late-type M dwarfs (M3.5-M8.5) from the literature are also included to explore the entire spectral sequence. 53 of the objects in our sample (∼\sim64\%) show statistically significant short-term variability in Hα\alpha. We show that this variability in 38 of them are most likely to be related to the flaring events. We find that the early M dwarfs are less variable despite showing higher activity strengths (LHα_{H\alpha}/Lbol_{bol} \& LHβ_{H\beta}/Lbol_{bol}), which saturates around ∼\sim10−3.8^{-3.8} for M0-M4 types. Using archival photometric light curves from TESS and Kepler/K2 missions, the derived chromospheric emission (\ha and \hb emission) variability is then explored for any plausible systematics with respect to their rotation phase. The variability indicators clearly show higher variability in late-type M dwarfs (M5-M8.5) with shorter rotation periods (<<2 days). For 44 sources, their age has been estimated using StarHorse project and possible correlations with variability have been explored. The possible causes and implications for these behaviors are discussed.Comment: There are 35 pages including 18 pages of supplementary material. The manuscript is accepted for publication in MNRA

    On the identification of N-rich metal-poor field stars with future China space station telescope

    Full text link
    During the long term evolution of globular clusters (GCs), a part of member stars are lost to the field. The recently found nitrogen-rich (N-rich) metal-poor field stars are promising candidates of these GC escapees, since N enhancement is the fingerprint of chemically enhanced populations in GCs. In this work, we discuss the possibility of identifying N-rich metal-poor field stars with the upcoming China space station telescope (CSST). We focus on the main survey camera with NUV, u, g, r, i, z, y filters and slitless spectrograph with a resolution about 200. The combination of UV sensitive equipment and prominent N-related molecular lines in the UV band bodes well for the identification: the color-color diagram of (u-g) versus (g-r) is capable of separating N-rich field stars and normal halo stars, if metallicity can be estimated without using the information of u-band photometry. Besides, the synthetic spectra show that a signal-to-noise ratio of 10 is sufficient to identify N-rich field stars. In the near future, a large sample of N-rich field stars found by CSST, combined with state-of-the-art N-body simulations will be crucial to decipher the GC-Galaxy co-evolution.Comment: 13+2 pages, 11+2 figures, 4 tables, accepted by RA

    A peculiar interacting Be star binary in the Small Magellanic Cloud

    Get PDF
    We find that the emission-line object OGLEJ005039.05-725751.4, a member of the cluster OGLE-CL SMC 64, exhibits a peculiar light curve pattern repeating with a recurrence time of 141.45 days. The light curve resembles periodic outbursts with a duty cycle of 20%. A second long cycle of 2500 days is also detected in the photometric data set. Two X-SHOOTER spectra obtained at minimum and maximum reveal a Be star dominating at minimum light resembling the Classical Be star 48 Lib. The larger Hα emission, the stronger Na D absorption and the appearance of emission in the infrared Ca II triplet at maximum, might indicate periodic mass transfer in a complex binary system.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO) II. t-SNE Portrait of Local Fossil Relics and Structures

    Full text link
    Based on high-quality APOGEE DR17 and Gaia DR3 data for 1,742 red giants stars within 5 kpc of the Sun and not rotating with the Galactic disc (Vϕ<V_\phi < 100 km s−1^{-1}), we use the nonlinear technique of unsupervised analysis t-SNE to detect coherent structures in the space of ten chemical-abundance ratios: [Fe/H], [O/Fe], [Mg/Fe], [Si/Fe], [Ca/Fe], [C/Fe], [N/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe]. Additionally, we obtain orbital parameters for each star using the non-axisymmetric gravitational potential {\tt GravPot16}. Seven structures are detected, including the Splash, Gaia-Sausage-Enceladus (GSE), the high-α\alpha heated-disc population, N-C-O peculiar stars, and inner disk-like stars, plus two other groups that did not match anything previously reported in the literature, here named Galileo 5 and Galileo 6 (G5 and G6). These two groups overlap with Splash in [Fe/H], G5 being lower metallicity than G6, both between GSE and Splash in the [Mg/Mn] versus [Al/Fe] plane, G5 in the α\alpha-rich in-situ locus, and G6 on the border of the α\alpha-poor in-situ one; nonetheless their low [Ni/Fe] hints to a possible ex-situ origin. Their orbital energy distributions are between the Splash and GSE, with G5 being slightly more energetic than G6. We verified the robustness of all the obtained groups by exploring a large range of t-SNE parameters, applying it to various subsets of data, and also measuring the effect of abundance errors through Monte Carlo tests.Comment: Accepted by A&A. 19 pages, 15 figures, and 3 table
    • …
    corecore