1,518 research outputs found
Peatland hydrology and carbon release: why small-scale process matters
Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon
Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory
A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams
Classical Evolution of Quantum Elliptic States
The hydrogen atom in weak external fields is a very accurate model for the
multiphoton excitation of ultrastable high angular momentum Rydberg states, a
process which classical mechanics describes with astonishing precision. In this
paper we show that the simplest treatment of the intramanifold dynamics of a
hydrogenic electron in external fields is based on the elliptic states of the
hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical
symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields the {\it exact} evolution in time of these quantum
states, and so we explain the surprising match between purely classical
perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are
ultrastable hydrogenic eigenstates which have maximum total angular momentum
and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
Recommended from our members
Quantitative plant proteomics using hydroponic isotope labeling of entire plants (HILEP)
The African warlord revisited
To date, warlordism in Africa has been viewed solely negatively. This has come about, in part, because of the analytical lenses that have been used. Typically, warlordism has been examined at the state level; and behavioural traits, rather than definitionally necessary components, have been the focus. In effect, ‘warlord’ has been confused with other violent actors. I suggest here a reconceptualisation ‘from below’, which takes into account variation in types of warlordism, and which allows for both positive and negative effects of warlordism on society and the state
Recommended from our members
Being fluent and keeping looking
The complexities of the many concepts and models around information literacy are considered, and some personal views given as to how they may best be clarified, both theoretically and practically. A slightly adapted idea of the concept of information fluency can serve as a main general purpose for the promotion of information literacy, expressed as a more specific meta-model for the prevailing technological environment, and as still more specific components for a particular context. The focus of this relatively stable general formulation is on understanding, rather than skills or competences. It can incorporate the need for education, advice and counseling, as well as information provision, and with domain-specific literacies, as well as supporting personal information literacy
Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance
A precision measurement of absolute pi+p and pi-p elastic differential cross
sections at incident pion laboratory kinetic energies from T_pi= 141.15 to
267.3 MeV is described. Data were obtained detecting the scattered pion and
recoil proton in coincidence at 12 laboratory pion angles from 55 to 155
degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm
measurements were also obtained for pi+p energies up to 218.1 MeV, with the
scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled,
super-cooled liquid hydrogen target as well as solid CH2 targets were used. The
data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5%
normalization. The reliability of the cross section results was ensured by
carrying out the measurements under a variety of experimental conditions to
identify and quantify the sources of instrumental uncertainty. Our lowest and
highest energy data are consistent with overlapping results from TRIUMF and
LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave
analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA
solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv
requirements. Contact M.M. Pavan for originals). Submitted to Physical Review
Background model systematics for the Fermi GeV excess
The possible gamma-ray excess in the inner Galaxy and the Galactic center
(GC) suggested by Fermi-LAT observations has triggered a large number of
studies. It has been interpreted as a variety of different phenomena such as a
signal from WIMP dark matter annihilation, gamma-ray emission from a population
of millisecond pulsars, or emission from cosmic rays injected in a sequence of
burst-like events or continuously at the GC. We present the first comprehensive
study of model systematics coming from the Galactic diffuse emission in the
inner part of our Galaxy and their impact on the inferred properties of the
excess emission at Galactic latitudes and 300 MeV to 500
GeV. We study both theoretical and empirical model systematics, which we deduce
from a large range of Galactic diffuse emission models and a principal
component analysis of residuals in numerous test regions along the Galactic
plane. We show that the hypothesis of an extended spherical excess emission
with a uniform energy spectrum is compatible with the Fermi-LAT data in our
region of interest at CL. Assuming that this excess is the extended
counterpart of the one seen in the inner few degrees of the Galaxy, we derive a
lower limit of ( CL) on its extension away from the GC. We
show that, in light of the large correlated uncertainties that affect the
subtraction of the Galactic diffuse emission in the relevant regions, the
energy spectrum of the excess is equally compatible with both a simple broken
power-law of break energy GeV, and with spectra predicted by the
self-annihilation of dark matter, implying in the case of final
states a dark matter mass of GeV.Comment: 65 pages, 28 figures, 7 table
Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy
Monoclonal antibodies with neutralizing activity against SARS-CoV-2 have demonstrated clinical benefits in cases of mild-to-moderate SARS-CoV-2 infection, substantially reducing the risk for hospitalization and severe disease1–4. Treatment generally requires the administration of high doses of these monoclonal antibodies and has limited efficacy in preventing disease complications or mortality among hospitalized patients with COVID-195. Here we report the development and evaluation of anti-SARS-CoV-2 monoclonal antibodies with optimized Fc domains that show superior potency for prevention or treatment of COVID-19. Using several animal disease models of COVID-196,7, we demonstrate that selective engagement of activating Fcγ receptors results in improved efficacy in both preventing and treating disease-induced weight loss and mortality, significantly reducing the dose required to confer full protection against SARS-CoV-2 challenge and for treatment of pre-infected animals. Our results highlight the importance of Fcγ receptor pathways in driving antibody-mediated antiviral immunity and exclude the possibility of pathogenic or disease-enhancing effects of Fcγ receptor engagement of anti-SARS-CoV-2 antibodies upon infection. These findings have important implications for the development of Fc-engineered monoclonal antibodies with optimal Fc-effector function and improved clinical efficacy against COVID-19 disease
Recommended from our members
Multi-lingual and multi-cultural information literacy; perspectives, models and good practice
Purpose
This paper reviews current approaches to, and good practice, in information literacy development in multi-lingual and multi-cultural settings, with particular emphasis on provision for international students.
Design/methodology/approach
A selective and critical review of published literature is extended by evaluation of examples of multi-lingual information literacy tutorials and MOOCs.
Findings
Multi-lingual and multi-cultural information literacy are umbrella terms covering a variety of situations and issues. This provision is of increasing importance in an increasingly mobile and multi-cultural world. This article evaluates current approaches and good practice, focusing on issues of culture vis a vis language, the balance between individual and group needs, specific and generic information literacy instruction, and models for information literacy, pedagogy and culture. Recommendations for good practice and for further research are given,
Originality/value
This is one of very few articles critically reviewing how information literacy development is affected by linguistic and cultural factors
- …