1,086 research outputs found

    Mixing fuel particles for space combustion research using acoustics

    Get PDF
    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity

    Investigation of methods to produce a uniform cloud of fuel particles in a flame tube

    Get PDF
    The combustion of a uniform, quiescent cloud of 30-micron fuel particles in a flame tube was proposed as a space-based, low-gravity experiment. The subject is the normal- and low-gravity testing of several methods to produce such a cloud, including telescoping propeller fans, air pumps, axial and quadrature acoustical speakers, and combinations of these devices. When operated in steady state, none of the methods produced an acceptably uniform cloud (+ or - 5 percent of the mean concentration), and voids in the cloud were clearly visible. In some cases, severe particle agglomeration was observed; however, these clusters could be broken apart by a short acoustic burst from an axially in-line speaker. Analyses and experiments reported elsewhere suggest that transient, acoustic mixing methods can enhance cloud uniformity while minimizing particle agglomeration

    Characterizing the Epigenetic and Transcriptomic Responses to Perkinsus marinus Infection in the Eastern Oyster Crassostrea virginica

    Get PDF
    © Copyright © 2020 Johnson, Sirovy, Casas, La Peyre and Kelly. Eastern oysters in the northern Gulf of Mexico are routinely infected with the protistan parasite Perkinsus marinus, the cause of the disease commonly known as dermo. Recent experimental challenges among Atlantic coast populations have identified both resistant and susceptible genotypes using comparative transcriptomics. While controlled experimental challenges are essential first assessments, expanding this analysis to field reared individuals provides an opportunity to identify key genomic signatures of infection that appear both in the laboratory and in the field. In this study we combined reduced representation bisulfite sequencing with 3′ RNA sequencing (Tag-seq) to describe two molecular phenotypes associated with infection in oysters outplanted at a common garden field site. These combined approaches allowed us to examine changes in DNA methylation and gene expression for a large number of individuals (n = 40) that developed infections during the course of a common garden outplant experiment. Our epigenetic analysis of DNA methylation identified significant changes in gene body methylation associated with increasing infection intensity, across genes associated with immune responses. There was a smaller transcriptomic response to increasing infection intensities with 32 genes showing differential expression; however, only 40% of these genes were found to also be differentially methylated. While there was no clear pattern between direction of differential methylation and gene expression, there was a significant effect of percent methylation on gene-by-gene expression levels and the coefficient of variation in gene body methylation between treatments. These results show that in C. virginica, heavily methylated genes have high levels of gene expression with low levels of variation. Comparing our differential expression results with previously published experimental P. marinus challenges identified overlapping expression patterns for genes associated with C1q-domain-containing and V-type proton ATPase proteins. Through our comparative transcriptomic approach using field reared individuals and co-expression network analysis we have also been able to identify a network of genes that change in expression in response to infection. These combined analyses provide evidence for a conserved response to P. marinus infections across infection intensities and suggest that DNA methylation may not be a reliable predictor of differential gene expression in long-term infections

    Neurophysiology

    Get PDF
    Contains reports on two research projects.Teagle Foundation, IncorporatedNational Institutes of HealthBell Telephone Laboratories, Incorporate

    Neurophysiology

    Get PDF
    Contains reports on four research projects.Bell Telephone Laboratories, IncorporatedThe Teagle Foundation, IncorporatedNational Science Foundatio

    Neurophysiology

    Get PDF
    Contains a report on a research project

    Evidence for the evolution of a single component phenol/cresol hydroxylase from a multicomponent toluene monooxygenase

    Full text link
    We have previously reported on the organization of a unique toluene-3-monooxygenase pathway for the degradation of alkyl-substituted petroleum hydrocarbons including characteristics of the second step in the pathway transforming phenols to catechols. In the present work we have focused on the regulation and unusual genetic organization of this metabolic step. In particular, we have sequenced the 3-kb DNA interval between the region encoding the tbuD gene product (phenol/cresol hydroxylase) and part of the toluene-3-monooxygenase operon of strain PKO1. Then, various regions of this DNA were fused to a LacZ expression system to ascertain the location of the tbuD gene promoter and the binding site for its regulator, TbuT. The 5′ end for transcripts for the putative promoter of the tbuD gene was also analyzed using primer extension analysis. Collectively, these results revealed that the promoter was located 2.5-kb upstream of the region encoding the tbuD gene product whose N-terminal region had been previously determined by peptide sequencing. Remarkably, the intervening 2.5-kb region showed sequence identity to results we reported previously for a multi-subunit toluene-2-monooxygenase cloned from a different bacterium, strain JS150, for which phenols are also substrates and effectors. When the DNA sequence for the tbuD gene and its contiguous 2.5-kb upstream region were compared to the entire toluene-2-monooxygenase sequence cloned from strain JS150, a promoter proximal region encoding three reading frames showed 99% identity to subunits for the toluene-2-monooxygenase operon. Within the contiguous tbuD gene region, however, DNA sequence homology was reduced to 64% overall identity and deduced amino acid sequence homology was only 21% similar. Although regions internal to the tbuD gene showed homology to corresponding toluene-2-monooxygenase subunits, domains associated with the putative functions proposed for such subunits were deleted. We believe that these results suggest that through evolution either tbuD was derived from the 2-monooxygenase pathway by deletions and molecular rearrangements, or alternatively the tbuD gene recruited part of the 2-monooxygenase pathway and its regulatory system which is activated by benzene, alkyl-substituted benzenes and phenols.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42353/1/70190360.pd

    Neurophysiology

    Get PDF
    Contains research objectives and reports on four research projects.Bell Telephone Laboratories, IncorporatedNational Institutes of HealthNational Science FoundationTeagle Foundation, Incorporate

    Phylogeographical Structure and Evolutionary History of Two Buggy Creek Virus Lineages in the Western Great Plains of North America

    Get PDF
    Buggy Creek virus (BCRV) is an unusual arbovirus within the western equine encephalitis complex of alphaviruses. Associated with cimicid swallow bugs (Oeciacus vicarius) as its vector and the cliff swallow (Petrochelidon pyrrhonota) and house sparrow (Passer domesticus) as its amplifying hosts, this virus is found primarily in the western Great Plains of North America at spatially discrete swallow nesting colonies. For 342 isolates collected in Oklahoma, Nebraska, Colorado, and North Dakota, from 1974 to 2007, we sequenced a 2076 bp region of the 26S subgenomic RNA structural glycoprotein coding region, and analyzed phylogenetic relationships, rates of evolution, demographical histories and temporal genetic structure of the two BCRV lineages found in the Great Plains. The two lineages showed distinct phylogeographical structure: one lineage was found in the southern Great Plains and the other in the northern Great Plains, and both occurred in Nebraska and Colorado. Within each lineage, there was additional latitudinal division into three distinct sublineages. One lineage is showing a long-term population decline. In comparing sequences taken from the same sites 8–30 years apart, in one case one lineage had been replaced by the other, and in the other cases there was little evidence of the same haplotypes persisting over time. The evolutionary rate of BCRV is in the order of 1.6–3.6 × 10–4 substitutions per site per year, similar to that estimated for other temperate-latitude alphaviruses. The phylogeography and evolution of BCRV could be better understood once we determine the nature of the ecological differences between the lineages

    Phylogeographical Structure and Evolutionary History of Two Buggy Creek Virus Lineages in the Western Great Plains of North America

    Get PDF
    Buggy Creek virus (BCRV) is an unusual arbovirus within the western equine encephalitis complex of alphaviruses. Associated with cimicid swallow bugs (Oeciacus vicarius) as its vector and the cliff swallow (Petrochelidon pyrrhonota) and house sparrow (Passer domesticus) as its amplifying hosts, this virus is found primarily in the western Great Plains of North America at spatially discrete swallow nesting colonies. For 342 isolates collected in Oklahoma, Nebraska, Colorado, and North Dakota, from 1974 to 2007, we sequenced a 2076 bp region of the 26S subgenomic RNA structural glycoprotein coding region, and analyzed phylogenetic relationships, rates of evolution, demographical histories and temporal genetic structure of the two BCRV lineages found in the Great Plains. The two lineages showed distinct phylogeographical structure: one lineage was found in the southern Great Plains and the other in the northern Great Plains, and both occurred in Nebraska and Colorado. Within each lineage, there was additional latitudinal division into three distinct sublineages. One lineage is showing a long-term population decline. In comparing sequences taken from the same sites 8–30 years apart, in one case one lineage had been replaced by the other, and in the other cases there was little evidence of the same haplotypes persisting over time. The evolutionary rate of BCRV is in the order of 1.6–3.6 × 10–4 substitutions per site per year, similar to that estimated for other temperate-latitude alphaviruses. The phylogeography and evolution of BCRV could be better understood once we determine the nature of the ecological differences between the lineages
    • …
    corecore