137 research outputs found

    Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments

    Get PDF
    A large proportion of nutrients and sediment is mobilised in catchments during storm events. Therefore understanding a catchment's hydrological behaviour during storms and how this acts to mobilise and transport nutrients and sediment to nearby watercourses is extremely important for effective catchment management. The expansion of available in-situ sensors is allowing a wider range of water quality parameters to be monitored and at higher temporal resolution, meaning that the investigation of hydrochemical behaviours during storms is increasingly feasible. Studying the relationship between discharge and water quality parameters in storm events can provide a valuable research tool to infer the likely source areas and flow pathways contributing to nutrient and sediment transport. Therefore, this paper uses 2years of high temporal resolution (15/30min) discharge and water quality (nitrate-N, total phosphorus (TP) and turbidity) data to examine hysteretic behaviour during storm events in two contrasting catchments, in the Hampshire Avon catchment, UK. This paper provides one of the first examples of a study which comprehensively examines storm behaviours for up to 76 storm events and three water quality parameters. It also examines the observational uncertainties using a non-parametric approach. A range of metrics was used, such as loop direction, loop area and a hysteresis index (HI) to characterise and quantify the storm behaviour. With two years of high resolution information it was possible to see how transport mechanisms varied between parameters and through time. This study has also clearly shown the different transport regimes operating between a groundwater dominated chalk catchment versus a surface-water dominated clay catchment. This information, set within an uncertainty framework, means that confidence can be derived that the patterns and relationships thus identified are statistically robust. These insights can thus be used to provide information regarding transport processes and biogeochemical processing within river catchments

    Nutrient enrichment induces a shift in dissolved organic carbon (DOC) metabolism in oligotrophic freshwater sediments

    Get PDF
    Dissolved organic carbon (DOC) turnover in aquatic environments is modulated by the presence of other key macronutrients, including nitrogen (N) and phosphorus (P). The ratio of these nutrients directly affects the rates of microbial growth and nutrient processing in the natural environment. The aim of this study was to investigate how labile DOC metabolism responds to changes in nutrient stoichiometry using 14C tracers in conjunction with untargeted analysis of the primary metabolome in upland peat river sediments. N addition led to an increase in 14C-glucose uptake, indicating that the sediments were likely to be primarily N limited. The mineralisation of glucose to 14CO2 reduced following N addition, indicating that nutrient addition induced shifts in internal carbon (C) partitioning and microbial C use efficiency (CUE). This is directly supported by the metabolomic profile data which identified significant differences in 22 known metabolites (34% of the total) and 30 unknown metabolites (16% of the total) upon the addition of either N or P. 14C-glucose addition increased the production of organic acids known to be involved in mineral P dissolution (e.g. gluconic acid, malic acid). Conversely, when N was not added, the addition of glucose led to the production of the sugar alcohols, mannitol and sorbitol, which are well known microbial C storage compounds. P addition resulted in increased levels of several amino acids (e.g. alanine, glycine) which may reflect greater rates of microbial growth or the P requirement for coenzymes required for amino acid synthesis. We conclude that inorganic nutrient enrichment in addition to labile C inputs has the potential to substantially alter in-stream biogeochemical cycling in oligotrophic freshwaters

    Characterisation of treated effluent from four commonly employed wastewater treatment facilities:A UK case study

    Get PDF
    Sewage treatment systems are a common feature across the landscape of the United Kingdom, serving an estimated 96% of the population and discharging approximately eleven billion litres of treated wastewater daily. While large treatment facilities are ubiquitous across the landscape, they are not the only method employed in domestic wastewater treatment. This study investigates whether differences in nutrient export (carbon, nitrogen and phosphorus) and organic matter composition (determined by optical indices, SUVA254, S350-400 and E2:E3) from treated effluent could be detected between four of the most common facilities employed in the treatment of wastewater across the UK. Set in the context of the River Wylye, a small headwater catchment, treatment facilities studied included; a septic tank system, small packet treatment works, and two large sewage treatment works, one of which employed phosphorus stripping for phosphorus removal. Inorganic N and P concentrations ranged between 7.51 and 42.4 mg N l−1 and 0.22 and 8.9 mg P l−1 respectively, with DOC concentrations ranging between 1.63 and 11.8 mg C l−1. Optical indices were comparable to those observed in catchments where organic matter is dominated by autochthonous production, suggesting the dominance of low molecular weight material when compared to values observed across temperate aquatic systems. Combining data from both the Environment Agency and Ordinance Survey we estimate that only 15% of domestic properties not connected to mains sewerage in the study catchment have an Environment Agency consent/exemption permit. This calculation suggests that the quantity of small point sources are significantly underestimated, undermining efforts under current legislation to improve stream ecosystem health.</p

    Determining the Impact of Riparian Wetlands on Nutrient Cycling, Storage and Export in Permeable Agricultural Catchments

    Get PDF
    The impact of riparian wetlands on the cycling, retention and export of nutrients from land to water varies according to local environmental conditions and is poorly resolved in catchment management approaches. To determine the role a specific wetland might play in a catchment mitigation strategy, an alternative approach is needed to the high-frequency and spatially detailed monitoring programme that would otherwise be needed. Here, we present a new approach using a combination of novel and well-established geochemical, geophysical and isotope ratio methods. This combined approach was developed and tested against a 2-year high-resolution sampling programme in a lowland permeable wetland in the Lambourn catchment, UK. The monitoring programme identified multiple pathways and water sources feeding into the wetland, generating large spatial and temporal variations in nutrient cycling, retention and export behaviours within the wetland. This complexity of contributing source areas and biogeochemical functions within the wetland were effectively identified using the new toolkit approach. We propose that this technique could be used to determine the likely net source/sink function of riparian wetlands prior to their incorporation into any catchment management plan, with relatively low resource implications when compared to a full high-frequency nutrient speciation and isotope geochemistry-based monitoring approach

    Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments

    Get PDF
    Dissolved organic matter (DOM) represents a key component of carbon (C) cycling in freshwater ecosystems. While the behaviour of bulk dissolved organic carbon (DOC) in aquatic ecosystems is well studied, comparatively little is known about the turnover of specific DOC compounds. The aim of this study was to investigate the persistence of 14C-labelled low molecular weight (LMW) DOC at a wide range of concentrations (0.1 µM to 10 mM), in sediments and waters from oligotrophic and mesotrophic rivers within the same catchment. Overall, rates of DOC loss varied between compound groups (amino acids > sugars = organic acids > phenolics). Sediment-based microbial communities contributed to higher DOC loss from river waters, which was attributed, in part, to its greater microbial biomass. At higher DOC compound concentrations, DOC loss was greater in mesotrophic rivers in comparison to oligotrophic headwaters. A lag-phase in substrate use within sediments provided evidence of microbial growth and adaptation, ascribed here to the lack of inorganic nutrient limitation on microbial C processing in mesotrophic communities. We conclude that the higher microbial biomass and available inorganic nutrients in sediments enables the rapid processing of LMW DOC, particularly during high C enrichment events and in N and P-rich mesotrophic environments
    corecore