415 research outputs found

    Can tooth differentiation help to understand species coexistence? The case of wood mice in China

    Full text link
    Five wood mice Apodemus species occur across China, in allopatry but also in sympatry up to cases of syntopy. They all share a similar external appearance, similar habitats of grasslands and forests and a generalist feeding behaviour. This overall similarity raises questions about the mechanisms insuring competition avoidance and allowing the coexistence of the species. In this context, a morphometric analysis of two characters related to feeding (mandible and molar) addressed the following issues: (1) Were the species actually different in size and/or shape of these characters, supporting their role in resource partitioning? (2) Did this pattern of phenotypic divergence match the neutral genetic differentiation, suggesting that differentiation might have occurred in a former phase of allopatry as a result of stochastic processes? (3) Did the species provide evidence of character displacement when occurring in sympatry, supporting an ongoing role of competition in the interspecific divergence? Results evidenced first that different traits, here mandibles and molars, provided discrepant pictures of the evolution of the Apodemus group in China. Mandible shape appeared as prone to vary in response to local conditions, blurring any phylogenetic or ecological pattern, whereas molar shape evolution appeared to be primarily driven by the degree of genetic differentiation. Molar size and shape segregated the different species in the morphospace, suggesting that these features may be involved in a resource partitioning between Apodemus species. The morphological segregation of the species, likely achieved by processes of differentiation in isolation promoted by the complex landscape of China, could contribute to competition avoidance and hence explain why no evidence was found of character displacement. © 2012 Blackwell Verlag GmbH

    Protecting role of cosolvents in protein denaturation by SDS: a structural study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, we reported a unique approach to preserve the activity of some proteins in the presence of the denaturing agent, Sodium Dodecyl Sulfate (SDS). This was made possible by addition of the amphipathic solvent 2,4-Methyl-2-PentaneDiol (MPD), used as protecting but also as refolding agent for these proteins. Although the persistence of the protein activity in the SDS/MPD mixture was clearly established, preservation of their structure was only speculative until now.</p> <p>Results</p> <p>In this paper, a detailed X-ray study addresses the pending question. Crystals of hen egg-white lysozyme were grown for the first time in the presence of MPD and denaturing concentrations of SDS. Depending on crystallization conditions, tetragonal crystals in complex with either SDS or MPD were collected. The conformation of both structures was very similar to the native lysozyme and the obtained complexes of SDS-lysozyme and MPD-lysozyme give some insights in the interplay of protein-SDS and protein-MPD interactions.</p> <p>Conclusion</p> <p>This study clearly established the preservation of the enzyme structure in a SDS/MPD mixture. It is hypothesized that high concentrations of MPD would change the properties of SDS and lower or avoid interactions between the denaturant and the protein. These structural data therefore support the hypothesis that MPD avoids disruption of the enzyme structure by SDS and can protect proteins from SDS denaturation.</p

    A Unifying Model for the Analysis of Phenotypic, Genetic, and Geographic Data

    Get PDF
    Recognition of evolutionary units (species, populations) requires integrating several kinds of data, such as genetic or phenotypic markers or spatial information in order to get a comprehensive view concerning the differentiation of the units. We propose a statistical model with a double original advantage: (i) it incorporates information about the spatial distribution of the samples, with the aim to increase inference power and to relate more explicitly observed patterns to geography and (ii) it allows one to analyze genetic and phenotypic data within a unified model and inference framework, thus opening the way to robust comparisons between markers and possibly combined analyses. We show from simulated data as well as real data that our method estimates parameters accurately and is an improvement over alternative approaches in many situations. The power of this method is exemplified using an intricate case of inter- and intraspecies differentiation based on an original data set of georeferenced genetic and morphometric markers obtained on Myodes voles from Sweden. A computer program is made available as an extension of the R package Genelan

    A meta-analytical investigation of the gap between measured and predicted inter-population genetic diversity in species of high conservation concern - the case of the critically endangered European mink Mustela lutreola L., 1761

    Full text link
    Although properly designed sampling in population genetic studies is of key importance for planning evidence-informed conservation measures, sampling strategies are rarely discussed. This is the case for the European mink Mustela lutreola, a critically endangered species. In order to address this problem, a meta-analysis aiming to examine the completeness of mtDNA haplotype sampling in recent studies of M. lutreola inter-population genetic diversity was conducted. The analysis was performed using the sample-size-based rarefaction and extrapolation sampling curve method for three populations—the Northeastern (Russia, Belarus and Estonia), the Western (France and Spain), and the Southeastern (Romania). The extrapolated values of the Shannon–Wiener index were determined, assuming full sample coverage. The gap between the measured and predicted inter-population genetic diversity was estimated, indicating that the identified level of sample coverage was the lowest for the NE population (87%), followed by the SE population (96%) and the W population (99%). A guide for sampling design and accounting for sampling uncertainty in future population genetic studies on European mink is provided. The relatively low sample coverage for the Russian population clearly indicates an urgent need to take conservation measures for European mink in this country

    A northern glacial refugium for bank voles (Clethrionomys glareolus).

    Full text link
    peer reviewedThere is controversy and uncertainty on how far north there were glacial refugia for temperate species during the Pleistocene glaciations and in the extent of the contribution of such refugia to present-day populations. We examined these issues using phylogeographic analysis of a European woodland mammal, the bank vole (Clethrionomys glareolus). A Bayesian coalescence analysis indicates that a bank vole population survived the height of the last glaciation (≈25,000–10,000 years B.P.) in the vicinity of the Carpathians, a major central European mountain chain well north of the Mediterranean areas typically regarded as glacial refugia for temperate species. Parameter estimates from the fitted isolation with migration model show that the divergence of the Carpathian population started at least 22,000 years ago, and it was likely followed by only negligible immigration from adjacent regions, suggesting the persistence of bank voles in the Carpathians through the height of the last glaciation. On the contrary, there is clear evidence for gene flow out of the Carpathians, demonstrating the contribution of the Carpathian population to the colonization of Europe after the Pleistocene. These findings are consistent with data from animal and plant fossils recovered in the Carpathians and provide the clearest phylogeographic evidence to date of a northern glacial refugium for temperate species in Europe

    Molecular phylogeny of South-East Asian arboreal murine rodents

    Full text link
    peer reviewedRecent phylogenetic studies and taxonomic reviews have led to nearly complete resolution of the phylogenetic divisions within the old world rats and mice (Muridae, Murinae). The Micromys division and Pithecheir division are two notable exceptions where groupings of species into these divisions based on morphology and arboreal lifestyle have not been supported by phylogenetic evidence. Several enigmatic species from these divisions have been missing from molecular studies, preventing a rigorous revision of phylogenetic relationships. In this study, we sequenced for the first time one mitochondrial and three nuclear genes from South-East Asian keystone species of these two arboreal divisions: Hapalomys delacouri (Micromys division), Lenothrix canus and Pithecheir parvus (Pithecheir division). We also complemented the molecular data already available for the two divisions with new data from Sundaic Chiropodomys, Indian Vandeleuria oleracea and the recently described Sulawesian Margaretamys christinae. Using this new phylogenetic framework and molecular dating methodologies, our study allows some more detailed classification of the former Micromys and Pithecheir divisions, while confirming their polyphyletic status. Specifically, the former Micromys division should now be split into four monotypic divisions: Chiropodomys, Hapalomys, Micromys and Vandeleuria divisions. The former Pithecheir division is likely to be refined and restricted to Pithecheir and probably Pithecheirops, whereas Lenothrix and Margaretamys should now be recognized as representatives of the Dacnomys division. Our findings have profound implications with regard to the systematics of Murinae, as well as to the early evolution of murine morphology and dental characters
    • …
    corecore