3,391 research outputs found

    A Second Step Towards Complexity-Theoretic Analogs of Rice's Theorem

    Get PDF
    Rice's Theorem states that every nontrivial language property of the recursively enumerable sets is undecidable. Borchert and Stephan initiated the search for complexity-theoretic analogs of Rice's Theorem. In particular, they proved that every nontrivial counting property of circuits is UP-hard, and that a number of closely related problems are SPP-hard. The present paper studies whether their UP-hardness result itself can be improved to SPP-hardness. We show that their UP-hardness result cannot be strengthened to SPP-hardness unless unlikely complexity class containments hold. Nonetheless, we prove that every P-constructibly bi-infinite counting property of circuits is SPP-hard. We also raise their general lower bound from unambiguous nondeterminism to constant-ambiguity nondeterminism.Comment: 14 pages. To appear in Theoretical Computer Scienc

    Anyone but Him: The Complexity of Precluding an Alternative

    Get PDF
    Preference aggregation in a multiagent setting is a central issue in both human and computer contexts. In this paper, we study in terms of complexity the vulnerability of preference aggregation to destructive control. That is, we study the ability of an election's chair to, through such mechanisms as voter/candidate addition/suppression/partition, ensure that a particular candidate (equivalently, alternative) does not win. And we study the extent to which election systems can make it impossible, or computationally costly (NP-complete), for the chair to execute such control. Among the systems we study--plurality, Condorcet, and approval voting--we find cases where systems immune or computationally resistant to a chair choosing the winner nonetheless are vulnerable to the chair blocking a victory. Beyond that, we see that among our studied systems no one system offers the best protection against destructive control. Rather, the choice of a preference aggregation system will depend closely on which types of control one wishes to be protected against. We also find concrete cases where the complexity of or susceptibility to control varies dramatically based on the choice among natural tie-handling rules.Comment: Preliminary version appeared in AAAI '05. Also appears as URCS-TR-2005-87

    Empirical and Strong Coordination via Soft Covering with Polar Codes

    Full text link
    We design polar codes for empirical coordination and strong coordination in two-node networks. Our constructions hinge on the fact that polar codes enable explicit low-complexity schemes for soft covering. We leverage this property to propose explicit and low-complexity coding schemes that achieve the capacity regions of both empirical coordination and strong coordination for sequences of actions taking value in an alphabet of prime cardinality. Our results improve previously known polar coding schemes, which (i) were restricted to uniform distributions and to actions obtained via binary symmetric channels for strong coordination, (ii) required a non-negligible amount of common randomness for empirical coordination, and (iii) assumed that the simulation of discrete memoryless channels could be perfectly implemented. As a by-product of our results, we obtain a polar coding scheme that achieves channel resolvability for an arbitrary discrete memoryless channel whose input alphabet has prime cardinality.Comment: 14 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor
    corecore