31 research outputs found

    Vegetable oil hybrid films cross-linked at the air-water interface: formation kinetics and physical characterization

    Full text link
    Vegetable oil based hybrid films were developed thanks to a novel solvent- and heating- free method at the air-water interface using silylated castor oil cross-linked via a sol-gel reaction. To understand the mechanism of the hybrid film formation, the reaction kinetics was studied in detail by using complementary techniques: rheology, thermogravimetric analysis, and infrared spectroscopy. The mechanical properties of the final films were investigated by nano-indentation, whereas their structure was studied using a combination of wide-angle X-ray scattering, electron diffraction, and atomic force microscopy. We found that solid and transparent films form in 24 hours and, by changing the silica precursor to castor oil ratio, their mechanical properties are tunable in the MPa-range by about a factor of twenty. In addition to that, a possible optimization of the cross-linking reaction with different catalysts was explored and finally, cytotoxicity tests were performed on fibroblasts proving the absence of film toxicity. The results of this work pave the way to a straightforward synthesis of castor-oil films with tunable mechanical properties: hybrid films cross-linked at the air-water interface combine an easy and cheap spreading protocol with the features of their thermal history optimized for possible future micro/nano drug loading, thus representing excellent candidates for the replacement of non-environment friendly petroleum-based materials

    A Tethered Bilayer Assembled on Top of Immobilized Calmodulin to Mimic Cellular Compartmentalization

    Get PDF
    International audienceBACKGROUND: Biomimetic membrane models tethered on solid supports are important tools for membrane protein biochemistry and biotechnology. The supported membrane systems described up to now are composed of a lipid bilayer tethered or not to a surface separating two compartments: a "trans" side, one to a few nanometer thick, located between the supporting surface and the membrane; and a "cis" side, above the synthetic membrane, exposed to the bulk medium. We describe here a novel biomimetic design composed of a tethered bilayer membrane that is assembled over a surface derivatized with a specific intracellular protein marker. This multilayered biomimetic assembly exhibits the fundamental characteristics of an authentic biological membrane in creating a continuous yet fluid phospholipidic barrier between two distinct compartments: a "cis" side corresponding to the extracellular milieu and a "trans" side marked by a key cytosolic signaling protein, calmodulin. METHODOLOGY/PRINCIPAL FINDINGS: We established and validated the experimental conditions to construct a multilayered structure consisting in a planar tethered bilayer assembled over a surface derivatized with calmodulin. We demonstrated the following: (i) the grafted calmodulin molecules (in trans side) were fully functional in binding and activating a calmodulin-dependent enzyme, the adenylate cyclase from Bordetella pertussis; and (ii) the assembled bilayer formed a continuous, protein-impermeable boundary that fully separated the underlying calmodulin (trans side) from the above medium (cis side). CONCLUSIONS: The simplicity and robustness of the tethered bilayer structure described here should facilitate the elaboration of biomimetic membrane models incorporating membrane embedded proteins and key cytoplasmic constituents. Such biomimetic structures will also be an attractive tool to study translocation across biological membranes of proteins or other macromolecules

    Estrogen receptor preparation effects on the receptor–DNA interaction by surface plasmon resonance

    No full text
    International audienceUp to now, several studies have investigated estrogen receptor (ER)–estrogen response element (ERE) interaction using biosensors such as surface plasmon resonance. These strategies have aimed to understand the molecular mechanism of such interaction as well as the effect of the ligand on this interaction. These approaches start to be used to determine the mechanisms of protein/DNA interaction, in particular in the context of drug discovery or environmental applications. However, some physical and biochemical parameters (incubation time, temperature, protease inhibitor cocktail, and bovine serum albumin (BSA)) are not completely described in the literature and could deeply modify the obtained results. This paper aims to focus not only on the preliminary steps of sample preparation such as protein thawing and incubation conditions (time and temperature) but also on the evaluation of protease inhibitor cocktail and BSA effect on the measurement of ER–ERE interactions

    Determination of estrogen presence in water by SPR using estrogen receptor dimerization

    No full text
    International audienceEstrogenic compounds are a class of pharmaceutical products harmful to animals and a cause of environmental damage. The biological activity of these compounds is high since they have been designed to act at low concentrations. Thus, even at the low concentrations found in the environment, they may produce deleterious effects on aquatic organisms as well as on humans, who might be contaminated in a number of ways (via drinking water or contaminated food, for example). We used the property of these compounds to bind a specific protein (estrogen receptor, ER) to develop a quantification method of these chemical entities. Estrogenic compound detection was performed using ER dimerization properties monitored by surface plasmon resonance (SPR). The ligand-activated ER dimer was detected by its interaction with a specific DNA consensus sequence estrogen response element. The concentration and the nature of the estrogenic compounds modified the SPR signal and were characteristic of the ligand-dependent homodimerization of ER. For 17β-estradiol, dimerization of ER was experimentally determined at an ER to 17β-estradiol ratio near 1:1. Estrogenic compounds (17β-estradiol, estriol, estrone, ethynyl estradiol) activated the dimerization process at different concentration levels, while some others (tamoxiphen, resveratrol, genistein, bisphenol A) did not seem to have any effects on it. We demonstrated that this method allows the direct detection of 17β-estradiol at concentrations above 1.4 μg/L (5 nM)

    Impact of biochemical design on estrogen receptor/estrogen response element interaction by surface plasmon resonance technology

    No full text
    International audienceThe estrogen receptor (ER) is a transcription factor that binds under 17-β-estradiol (E2) stimulation as homodimer to a short DNA consensus sequence named estrogen response element (ERE). The ER/ERE interaction has been assessed by several research groups through different methodologies notably by surface plasmon resonance (SPR) techniques. The biochemical parameters and conditions (solvent, ER concentration, salt, time and temperature) used to prepare samples before analysis were very different from one study to another. But no studies have aimed to compare the effect of these modifications on ER/ERE interaction. Therefore the main objective of the present paper was to assess the influence of biochemical parameters onto the ER/ERE interaction with the final aim to improve the comprehension of this interaction. Our results highlighted that parameters like solvent, ER concentration, salt and surfactant concentration, temperature and time deeply modify ER/ERE interaction. Nevertheless, the dimer formation under E2 stimulation occurred with all tested conditions. Altogether, incubation parameters of ER with E2, deeply modify its binding level onto ERE. These data constitute an important key point to consider for the improvement of ER/ERE detection method depending upon the aim of the study (interaction measurement, environmental detection, development of new technologies or devices)

    Critical parameters in surface plasmon resonance biosensor development the interaction between estrogen receptor and estrogen response element as model

    Get PDF
    International audienceEstrogenic compounds are contaminants that may be active at low concentrations and are a major concern for environmental quality. They interact with organisms via Estrogen Receptors (ER). Some detection methods which have been developed use the ability of ER to interact with short consensus DNA sequences known as Estrogen Response Elements (ERE). Surface Plasmon Resonance (SPR) based techniques allow detection of interaction without labelled molecule use. Such optical transductors are widely used to convert the biological recognition signals into electric quantifiable signals. In this study, SPR is used to assess signal variation in the presence of estrogenic compounds. The combination of physical properties and biological recognition events (e.g. ER/ERE) permits the development of biosensors. These require several steps activation of the surface, DNA sequence binding, ERE sequence evaluation, ER preparation, characterization of binding properties and regeneration of the surface. This article focuses on the mode of surface activation, protein-DNA binding conditions and the regeneration of ERE. After giving a summary of the literature concerning the usual conditions employed in these steps, an evaluation of some key parameters is given

    Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae.

    No full text
    International audienceThe aim of this study was to characterize new Bacillus thuringiensis strains that have a potent insecticidal activity against Ephestia kuehniella larvae. Strains harboring cry1A genes were tested for their toxicity, and the Lip strain showed a higher insecticidal activity compared to that of the reference strain HD1 (LC50 of Lip and HD1 were 33.27 and 128.61 ÎĽg toxin/g semolina, respectively). B. thuringiensis Lip harbors and expresses cry1Aa, cry1Ab, cry1Ac, cry1Ad and cry2A. DNA sequencing revealed several polymorphisms in Lip Cry1Aa and Cry1Ac compared to the corresponding proteins of HD1. The activation process using Ephestia kuehniella midgut juice showed that Lip Cry1A proteins were more stable in the presence of larval proteases. Moreover, LipCry1A proteins exhibited higher insecticidal activity against these larvae. These results indicate that Lip is an interesting strain that could be used as an alternative to the worldwide used strain HD
    corecore