1,913 research outputs found

    Protective Mechanism of KIOM-4 in Streptozotocin-Induced Pancreatic β-Cells Damage Is Involved in the Inhibition of Endoplasmic Reticulum Stress

    Get PDF
    Endoplasmic reticulum stress-mediated apoptosis plays an important role in the destruction of pancreatic β-cells and contributes to the development of type 1 diabetes. The present study examined the effect of KIOM-4, a mixture of four plant extracts, on streptozotocin- (STZ-) induced endoplasmic reticulum (ER) stress in rat pancreatic β-cells (RINm5F). KIOM-4 was found to inhibit STZ-induced apoptotic cell death, confirmed by formation of apoptotic bodies and DNA fragmentation. STZ was found to induce the characteristics of ER stress; mitochondrial Ca2+ overloading, enhanced ER staining, release of glucose-regulated protein 78 (GRP78), phosphorylation of RNA-dependent protein kinase (PKR) like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF-2α), cleavage of activating transcription factor 6 (ATF6) and caspase 12, and upregulation of CCAAT/enhancer-binding protein-homologous protein (CHOP). However, KIOM-4 attenuated these changes induced by STZ. Furthermore, KIOM-4 suppressed apoptosis induced by STZ in CHOP downregulated cells using CHOP siRNA. These results suggest that KIOM-4 exhibits protective effects in STZ-induced pancreatic β-cell damage, by interrupting the ER stress-mediated pathway

    A Novel Thin Film Transistor Using Double Amorphous Silicon Active Layer

    Get PDF
    We have fabricated a novel low off-state leakage current thin-film transistor (TFT) using a chlorine incorporated amorphous silicon [a-Si:H(:Cl)] and amorphous silicon (a-Si:H) stacked active layer, in which conduction channel is formed in a-Si:H and a-Si:H(:Cl) is photo-insensitive material. The off-state photo-leakage current of the a-Si:H(:Cl)/a-Si:H TFT is much lower than that a conventional a-Si:H TFT

    F-18 FP-CIT PET in Multiple System Atrophy of the Cerebellar Type: Additional Role in Treatment

    Get PDF
    We evaluated the difference in the status of dopamine transporters (DATs) depending on Parkinsonism, cerebellar, and autonomic features using F-18 FP-CIT positron emission tomography (PET) in multiple system atrophy with cerebellar ataxia (MSA-C). We also assessed whether the DAT PET could be useful in the management of MSA-C. Forty-nine patients who were clinically diagnosed as possible to probable MSA-C were included. Based on the F-18 FP-CIT PET results, patients were classified into normal (n=25) and abnormal (n=24) scan groups. There were statistically significant differences in rigidity, bradykinesia, postural instability, asymmetry, and specific uptake ratio (SUR) between the two groups but no significant differences in tremor and cerebellar/autonomic symptoms. Dopaminergic medications were administered to 22 patients. All seven patients with normal scans showed no change, while 10 of the 15 patients with abnormal scans showed clinical improvement. There was a trend of a negative correlation between levodopa equivalent dose and SUR, but it was not statistically significant. DAT imaging, such as F-18 FP-CIT PET, may be useful in predicting the response to dopaminergic medication regardless of cerebellar/autonomic symptoms in MSA-C. In addition to being used for the diagnosis of the disease, it may be used as a treatment decision index

    P2X7 receptor regulates leukocyte infiltrations in rat frontoparietal cortex following status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present study, we investigated the roles of P2X7 receptor in recruitment and infiltration of neutrophil during epileptogenesis in rat epilepsy models.</p> <p>Methods</p> <p>Status epilepticus (SE) was induced by pilocarpine in rats that were intracerebroventricularly infused with either saline, 2',3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), adenosine 5'-triphosphate-2',3'-dialdehyde (OxATP), or IL-1Ra (interleukin 1 receptor antagonist) prior to SE induction. Thereafter, we performed immunohistochemical studies for myeloperoxidase (MPO), CD68, interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2).</p> <p>Results</p> <p>In saline-infused animals, neutrophils and monocytes were observed in frontoparietal cortex (FPC) at 1 day and 2 days after SE, respectively. In BzATP-infused animals, infiltrations of neutrophils and monocytes into the FPC were detected at 12 hr and 1 day after SE, respectively. In OxATP-infused animals, neutrophils and monocytes infiltrated into the FPC at 1 day and 2 days after SE, respectively. However, the numbers of both classes of leukocytes were significantly lower than those observed in the saline-infused group. In piriform cortex (PC), massive leukocyte infiltration was detected in layers III/IV of saline-infused animals at 1-4 days after induction of SE. BzATP or OxATP infusion did not affect neutrophil infiltration in the PC. In addition, P2X7 receptor-mediated MCP-1 (released from microglia)/MIP-2 (released from astrocytes) regulation was related to SE-induced leukocyte infiltration in an IL-1β-independent manner.</p> <p>Conclusions</p> <p>Our findings suggest that selective regulation of P2X7 receptor-mediated neutrophil infiltration may provide new therapeutic approaches to SE or epilepsy.</p

    In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    Get PDF
    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization.open4

    Magnetic moment of hyperons in nuclear matter by using quark-meson coupling models

    Full text link
    We calculate the magnetic moments of hyperons in dense nuclear matter by using relativistic quark models. Hyperons are treated as MIT bags, and the interactions are considered to be mediated by the exchange of scalar and vector mesons which are approximated as mean fields. Model dependence is investigated by using the quark-meson coupling model and the modified quark-meson coupling model; in the former the bag constant is independent of density and in the latter it depends on density. Both models give us the magnitudes of the magnetic moments increasing with density for most octet baryons. But there is a considerable model dependence in the values of the magnetic moments in dense medium. The magnetic moments at the nuclear saturation density calculated by the quark meson coupling model are only a few percents larger than those in free space, but the magnetic moments from the modified quark meson coupling model increase more than 10% for most hyperons. The correlations between the bag radius of hyperons and the magnetic moments of hyperons in dense matter are discussed.Comment: substantial changes in the text, submitted to PL
    corecore