40 research outputs found

    Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation

    Get PDF
    Studying gene function in the post-genome era requires methods to localize and inactivate proteins in a standardized fashion in model organisms. While genome-wide gene disruption and over-expression efforts are well on their way to vastly expand the repertoire of Drosophila tools, a complementary method to efficiently and quickly tag proteins expressed under endogenous control does not exist for fruit flies. Here, we describe the development of an efficient procedure to generate protein fusions at either terminus in an endogenous genomic context using recombineering. We demonstrate that the fluorescent protein tagged constructs, expressed under the proper control of regulatory elements, can rescue the respective mutations and enable the detection of proteins in vivo. Furthermore, we also adapted our method for use of the tetracysteine tag that tightly binds the fluorescent membrane-permeable FlAsH ligand. This technology allows us to acutely inactivate any tagged protein expressed under native control using fluorescein-assisted light inactivation and we provide proof of concept by demonstrating that acute loss of clathrin heavy chain function in the fly eye leads to synaptic transmission defects in photoreceptors. Our tagging technology is efficient and versatile, adaptable to any tag desired and paves the way to genome-wide gene tagging in Drosophila

    A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function

    Get PDF
    Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5′ untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes

    Integrating Computational Biology and Forward Genetics in Drosophila

    Get PDF
    Genetic screens are powerful methods for the discovery of gene–phenotype associations. However, a systems biology approach to genetics must leverage the massive amount of “omics” data to enhance the power and speed of functional gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for their performance on a genome-wide scale in vivo. In this work, we demonstrate that integrating genome-wide computational gene prioritization with large-scale genetic screening is a powerful tool for functional gene discovery. To discover genes involved in neural development in Drosophila, we extend our strategy for the prioritization of human candidate disease genes to functional prioritization in Drosophila. We then integrate this prioritization strategy with a large-scale genetic screen for interactors of the proneural transcription factor Atonal using genomic deficiencies and mutant and RNAi collections. Using the prioritized genes validated in our genetic screen, we describe a novel genetic interaction network for Atonal. Lastly, we prioritize the whole Drosophila genome and identify candidate gene associations for ten receptor-signaling pathways. This novel database of prioritized pathway candidates, as well as a web application for functional prioritization in Drosophila, called Endeavour-HighFly, and the Atonal network, are publicly available resources. A systems genetics approach that combines the power of computational predictions with in vivo genetic screens strongly enhances the process of gene function and gene–gene association discovery

    Trade‐offs between economic development and biodiversity conservation on a tropical island

    No full text
    Resolving trade-offs between economic development and biodiversity conservation needs is crucial in currently developing countries and in particularly sensitive systems harboring high biodiversity. Yet, such a task is challenging because human activities have complex effects on biodiversity. We assessed the effects of intense economic development on Hainan Island (southern China) on different components of biodiversity. This highly biodiverse tropical island has undergone extensive economic development and conversion of forest to agriculture and urban area. We identified 3 main transformation areas (low, medium, and high transformation) based on land-use, local-climate, and economic changes across 145 grids (10 × 10 km), and estimated changes in avian biodive6rsity from 1998 to 2013. We recorded ongoing taxonomic biotic homogenization throughout the island. Differences between traditional and directional alpha diversity decreased by 5%. Phylogenetically clustering increased by 0.5 points (W = 7928, p < 0.01), and functional overdispersion increased by 1 point (W = 16,411, p < 0.01). Initial taxonomic, phylogenetic, and functional scores correlated negatively with changes in these scores across all transformation areas (all ps < 0.01). At the local scale, economic and environmental indicators showed complex and divergent effects across transformation areas and biodiversity components. These effects were only partially ameliorated in an ecological function conservation area in the mountainous central part of the island. We found complex effects of economic development on different biodiversity dimensions in different areas with different land uses and protection regimes and between local and regional spatial scales. Profound ecosystem damage associated with economic development was partially averted, probably due to enhanced biodiversity conservation policies and law enforcement, but not without regional-scale biotic homogenization and local-scale biodiversity loss

    Pharmacovigilance Practice and Risk Control of TCM in China

    No full text
    http://dx.doi.org/10.1016/j.jep.2012.01.058info:eu-repo/semantics/publishe

    Conditional Mutagenesis in Drosophila

    No full text
    Most genes function at multiple stages of metazoan development, in dividing and nondividing cells. Generating mouse conditional knock-outs (cKO), where a gene can be eliminated in a temporally and spatially controlled manner, is a valuable technique because it allows study of gene function at any stage of life. In contrast and despite the development of many other powerful genetic tools, cKO has thus far been lacking in Drosophila. We combined several recent molecular and genetic technical advances in an approach termed integrase-mediated approach for gene knock-out (IMAGO). IMAGO allows the replacement of any genomic sequence, such as a gene, with another desired sequence, including cKO alleles that can be used to create positively marked mutant cells. IMAGO should also be applicable to other genetic model organisms.status: publishe
    corecore