22 research outputs found

    Microstructure–Property Control in Functional Materials by Multilayer Design

    Get PDF
    Smart microstructure and interface design in nanomultilayers allows to tailor physical properties like thermal stability, thermal conductivity and directional metal outflow for targeted applications. In this work, selected examples of nanomultilayer systems, constituted of alternating nanolayers of metals and/or nitrides, as precisely fabricated with variable textures, microstructures, grain sizes and internal stresses are presented. The role of the microstructure and stress state on selected functional properties is shown.ISSN:0009-429

    The Effect of Interfacial Ge and RF-Bias on the Microstructure and Stress Evolution upon Annealing of Ag/AlN Multilayers

    No full text
    The present study addresses the structural stability and mass outflow of Ag 10 nm/Ge 1 nm/AlN 10 nm nanomultilayers (NMLs) during thermal treatments in different atmospheres (Ar and air). The nanomultilayers were obtained by magnetron sputtering under different deposition conditions (with and without the RF (Radio-Frequency)-bias application). The microstructure of the as-deposited and thermally treated NMLs were analyzed by XRD and SEM techniques, deriving morphology, microstructure and internal stress. Bias application during the deposition is found to create highly disordered interfaces and to have a very strong influence on the morphology and structural evolution with temperature of the nano-multilayers. Complete multilayer degradation is observed for the bias sample when annealed in Ar at 700 ∘C, while the periodic multilayer structure is preserved for the non-bias samples. Structural and morphological changes are observed starting from 400 ∘C, accompanied with Ag surface migration. The highest Ag amount on the surface is detected in air atmosphere for bias and non-bias samples annealed at temperatures as high as 700 ∘C. The presence of Ge is found to strongly hinder the Ag surface migration. Ag outflow is measured to take place only through the network of surface cracks in the AlN barrier formed upon heating. The crack formation and Ag migration are discussed together with the stress relaxation. The present study demonstrates the feasibility to tailor the stress state of as-deposited NML structures and observe different structural evolution depending on the initial conditions. This paves the way for advanced experimental strategies to tailor directional mass outflow in nanoconfined filler systems for advanced nano-joining applications

    Validation of an Embedded-Atom Copper classical potential via bulk and nanostructure simulations

    No full text
    The validation of classical potentials for describing multicomponent materials in complex geometries and their high temperature structural modifications (disordering and melting) requires to verify both a faithful description of the individual phases and a convincing scheme for the mixed interactions, like it is the case of the embedded atom scheme. The present paper addresses the former task for an embedded atom potential for copper, namely the widely adopted parametrization by Zhou, through application to bulk, surface and nanocluster systems. It is found that the melting point is underestimated by 200 degrees with respect to experiment, but structural and temperature-dependent properties are otherwise faithfully reproduced

    A combinatorial guide to phase formation and surface passivation of tungsten titanium oxide prepared by thermal oxidation

    Full text link
    TiO2 and WO3 are two of the most important earth-abundant electronic materials with applications in countless industries. Recently alloys of WO3 and TiO2 have been investigated leading to improvements of key performance indicators for a variety of applications ranging from photo-electrochemical water splitting to electrochromic smart windows. These positive reports and the complexity of the ternary W-Ti-O phase diagram motivate a comprehensive experimental screening of this phase space. Using combinatorial thermal oxidation of solid solution W1-xTix precursors combined with bulk and surface analysis mapping we investigate the oxide phase formation and surface passivation of tungsten titanium oxide in the entire compositional range from pure WO3 to TiO2. The system shows a remarkable structural transition from monoclinic over cubic to tetragonal symmetry with increasing Ti concentration. In addition, a strong Ti surface enrichment is observed for precursor Ti-concentrations in excess of 55 at.%, resulting in the formation of a protective rutile-structured TiO2 surface layer. Despite the structural transitions, the optical properties of the oxide alloys remain largely unaltered demonstrating an independent control of multiple functional properties in W1-xTixOn. The results from this study provide valuable guidelines for future development of W1-xTixOn for electronic and energy applications, but also novel engineering approaches for surface functionalization and additive manufacturing of Ti-based alloys

    Joining with Reactive Nano-Multilayers: Influence of Thermal Properties of Components on Joint Microstructure and Mechanical Performance

    No full text
    Reactive nano-multilayers (RNMLs), which are able to undergo a self-heating exothermal reaction, can, e.g., be utilised as a local heat source for soldering or brazing. Upon joining with RNMLs, the heat produced by the exothermal reaction must be carefully adjusted to the joining system in order to provide sufficient heat for bond formation while avoiding damaging of the joining components by excessive heat. This heat balance strongly depends on the thermal properties of the joining components: a low thermal conductivity leads to heat concentration within the joining zone adjacent to the RNML, while a high thermal conductivity leads to fast heat dissipation into the components. The quality of the joint is thus co-determined by the thermal properties of the joining components. This work provides a systematic study on the influence of the thermal properties upon reactive joining for a set of substrate materials with thermal conductivities ranging from very low to very high. In particular, the evolution of the microstructure within the joining zone as a function of the specific time-temperature-profile for the given component material is investigated, focusing on the interaction between solder, RNML foil and surface metallisations, and the associated formation of intermetallic phases. Finally, the specific microstructure of the joints is related to their mechanical performance upon shear testing, and suggestions for optimum joint design are provided

    Anodizing of Self-Passivating WxTi1–x Precursors for WxTi1–xOn Oxide Alloys with Tailored Stability

    Full text link
    TiO2 and WO3 are two of the most important, industrially relevant earth-abundant oxides. Although both materials show complementary functionality and are promising candidates for similar types of applications such as catalysis, sensor technology, and energy conversion, their chemical stability in reactive environments differs remarkably. In this study, anodic barrier oxides are grown on solid-solution WxTi1–x alloy precursors covering a wide compositional range (0 ≤ x ≤ 1) with the goal of creating functional oxides with tailored stability. A strong Ti-cation enrichment in the surface region of the grown WxTi1–xOn layer is observed, which can be controlled by both the anodizing conditions and precursor composition. For Ti concentrations above 50 at. %, a continuous nanometer-thick TiO2 protective coating is achieved on top of a homogeneous WxTi1–xOn film as evidenced by X-ray photoelectron spectroscopy and transmission electron microscopy analyses. A comprehensive electrochemical assessment demonstrates a very stable passivation of the surface in both acidic and alkaline environments. This increase in chemical stability correlates directly with the presence of this protective TiO2 film. The results of this work provide insights into the oxidation behavior of W1–xTix alloys, but more importantly demonstrate how controlled oxidation of self-passivating alloys can lead to oxide alloys with thin, protective surface layers that otherwise would require more sophisticated deposition methods

    Atomistic simulations of the crystalline-to-amorphous transformation of gamma-Al2O3 nanoparticles: delicate interplay between lattice distortions, stresses, and space charges

    No full text
    The size-dependent phase stability of gamma-Al2O3 was studied by large-scale molecular dynamics simulations over a wide temperature range from 300 to 900 K. For the gamma-Al2O3 crystal, a bulk transformation to alpha-Al2O3 by an FCC-to-HCP transition of the O sublattice is still kinetically hindered at 900 K. However, local distortions of the FCC O-sublattice by the formation of quasi-octahedral Al local coordination spheres become thermally activated, as driven by the partial covalency of the Al-O bond. On the contrary, spherical gamma-Al2O3 NPs (with sizes of 6 and 10 nm) undergo a crystalline-to-amorphous transformation at 900 K, which starts at the reconstructed surface and propagates into the core through collective displacements of anions and cations, resulting in the formation of 7- and 8-fold local coordination spheres of Al. In parallel, the reconstructed Al-enriched surface is separated from the stoichiometric core by a diffuse Al-depleted transition region. This compositional heterogeneity creates a disbalance of charges inside the NP, which induces a net attractive Coulombic force that is strong enough to reverse the initial stress state in the NP core from compressive to tensile. These findings disclose the delicate interplay between lattice distortions, stresses, and space-charge regions in oxide nanosystems. A fundamental explanation for the reported expansion of metal-oxide NPs with decreasing size is provided, which has significant implications for e.g. heterogeneous catalysis, NP sintering, and additive manufacturing of NP-reinforced metal matrix composites

    Impact of Electrolyte Incorporation in Anodized Niobium on Its Resistive Switching

    No full text
    The aim of this study was to develop memristors based on Nb2O5 grown by a simple and inexpensive electrochemical anodization process. It was confirmed that the electrolyte selection plays a crucial role in resistive switching due to electrolyte species incorporation in oxide, thus influencing the formation of conductive filaments. Anodic memristors grown in phosphate buffer showed improved electrical characteristics, while those formed in citrated buffer exhibited excellent memory capabilities. The chemical composition of oxides was successfully determined using HAXPES, while their phase composition and crystal structure with conductive filaments was assessed by TEM at the nanoscale. Overall, understanding the switching mechanism leads towards a wide range of possible applications for Nb memristors either as selector devices or nonvolatile memories
    corecore