1,410 research outputs found
Change of quasilattice constant during amorphous-to-quasicrystalline phase transformation in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass
Percolation and epidemics in a two-dimensional small world
Percolation on two-dimensional small-world networks has been proposed as a
model for the spread of plant diseases. In this paper we give an analytic
solution of this model using a combination of generating function methods and
high-order series expansion. Our solution gives accurate predictions for
quantities such as the position of the percolation threshold and the typical
size of disease outbreaks as a function of the density of "shortcuts" in the
small-world network. Our results agree with scaling hypotheses and numerical
simulations for the same model.Comment: 7 pages, 3 figures, 2 table
Time-distance analysis of the emerging active region NOAA 10790
We investigate the emergence of Active Region NOAA 10790 by means of time – distance helioseismology. Shallow regions of increased sound speed at the location of increased magnetic activity are observed, with regions becoming deeper at the locations of sunspot pores. We also see a long-lasting region of decreased sound speed located underneath the region of the flux emergence, possibly relating to a temperature perturbation due to magnetic quenching of eddy diffusivity, or to a dense flux tube. We detect and track an object in the subsurface layers of the Sun characterised by increased sound speed which could be related to emerging magnetic-flux and thus obtain a provisional estimate of the speed of emergence of around 1 km s−1
Subsurface nitrate reduction under wetlands takes place in narrow superficial zones
This study aims to investigate the depth distribution of the Nitrate Reduction Potential (NRP) on a natural and a re-established wetland. The obtained NRP provides a valuable data of the driving factors affecting denitrification, the Dissimilatory Nitrate Reduction to Ammonium (DNRA) process and the performance of a re-established wetland. Intact soil cores were collected and divided in slices for the determination of Organic Matter (OM) through Loss of Ignition (LOI) as well as Dissolved Organic Carbon (DOC) and NRP spiking nitrate in batch tests. The Nitrate Reduction (NR) was fitted as a pseudo-first order rate constant (k) from where NRPs were obtained. NR took place in a narrow superficial zone showing a dropping natural logarithmic trend along depth. The main driving factor of denitrification, besides depth, was OM. Although, DOC and LOI could not express by themselves and absolute correlation with NRP, high amounts of DOC ensured enough quantity and quality of labile OM for NR. Besides, high concentration of LOI but a scarce abundance of DOC failed to drive NR. DNRA was only important in superficial samples with high contents of OM. Lastly, the high NRP of the re-established wetland confirms that wetlands can be restored satisfactorily.Preprin
Search for the Rare Decay KL --> pi0 ee
The KTeV/E799 experiment at Fermilab has searched for the rare kaon decay
KL--> pi0ee. This mode is expected to have a significant CP violating
component. The measurement of its branching ratio could support the Standard
Model or could indicate the existence of new physics. This letter reports new
results from the 1999-2000 data set. One event is observed with an expected
background at 0.99 +/- 0.35 events. We set a limit on the branching ratio of
3.5 x 10^(-10) at the 90% confidence level. Combining the results with the
dataset taken in 1997 yields the final KTeV result: BR(KL --> pi0 ee) < 2.8 x
10^(-10) at 90% CL.Comment: 4 pages, three figure
Can induced gravity isotropize Bianchi I, V, or IX Universes?
We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory
can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the
non--minimal coupling of gravity and the scalar field. The analytical results
that we found for the Brans-Dicke (BD) theory are now applied to the IG theory
which has ( being the square ratio of the Higgs to
Planck mass) in a cosmological era in which the IG--potential is not
significant. We find that the isotropization mechanism crucially depends on the
value of . Its smallness also permits inflationary solutions. For the
Bianch V model inflation due to the Higgs potential takes place afterwads, and
subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW
evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1
Population dynamics in compressible flows
Organisms often grow, migrate and compete in liquid environments, as well as
on solid surfaces. However, relatively little is known about what happens when
competing species are mixed and compressed by fluid turbulence. In these
lectures we review our recent work on population dynamics and population
genetics in compressible velocity fields of one and two dimensions. We discuss
why compressible turbulence is relevant for population dynamics in the ocean
and we consider cases both where the velocity field is turbulent and when it is
static. Furthermore, we investigate populations in terms of a continuos density
field and when the populations are treated via discrete particles. In the last
case we focus on the competition and fixation of one species compared to
anotherComment: 16 pages, talk delivered at the Geilo Winter School 201
Three-body structure of low-lying 18Ne states
We investigate to what extent 18Ne can be descibed as a three-body system
made of an inert 16O-core and two protons. We compare to experimental data and
occasionally to shell model results. We obtain three-body wave functions with
the hyperspherical adiabatic expansion method. We study the spectrum of 18Ne,
the structure of the different states and the predominant transition strengths.
Two 0+, two 2+, and one 4+ bound states are found where they are all known
experimentally. Also one 3+ close to threshold is found and several negative
parity states, 1-, 3-, 0-, 2-, most of them bound with respect to the 16O
excited 3- state. The structures are extracted as partial wave components, as
spatial sizes of matter and charge, and as probability distributions.
Electromagnetic decay rates are calculated for these states. The dominating
decay mode for the bound states is E2 and occasionally also M1.Comment: 17 pages, 5 figures (version to appear in EPJA
Benchmark Test Calculation of a Four-Nucleon Bound State
In the past, several efficient methods have been developed to solve the
Schroedinger equation for four-nucleon bound states accurately. These are the
Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis
variational, the stochastic variational, the hyperspherical variational, the
Green's function Monte Carlo, the no-core shell model and the effective
interaction hyperspherical harmonic methods. In this article we compare the
energy eigenvalue results and some wave function properties using the realistic
AV8' NN interaction. The results of all schemes agree very well showing the
high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure
- …
