528 research outputs found

    Developing an Electromechanical Carbon Dioxide Sensor for Occupancy Monitoring

    Get PDF
    The Energy Information Administration reported in 2012 that heating and cooling processes consume nearly 35% of the total energy used by commercial buildings. In an effort to limit the amount of energy wasted in conditioning empty buildings and rooms, various occupancy detection techniques have been developed that can be paired with a smart heating, ventilation, and air conditioning (HVAC) control system. This work focused on the development of a novel carbon dioxide detector that is sensitive enough to accurately determine if, and when, a room is occupied. To test the new sensor design, a customized chamber with gas inlets was used to isolate the sensors in a controlled environment. The sensors were tested in this chamber alongside various commercial-off-the-shelf options for the purpose of both validating the developed sensors and observing if they exhibited increased sensitivity and selectivity over previous designs. Following these tests, the overall performance of the sensors was compared. The results of this comparison were subsequently used to assess the capabilities of the sensor designs and to identify areas for further improvement

    Molecular Hydrogen in the FUSE Translucent Lines of Sight: The Full Sample

    Full text link
    We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the "second half" of the survey involving 15 lines of sight to supplement data for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, RVR_V = AVA_V / E(BV)E(B-V) -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions (fH2f_{\rm H2}). In the lines of sight with large RVR_V, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H2_2 formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, NN(Htot_{\rm tot})/E(BV)E(B-V), based on direct measurements of NN(H2_2) and NN(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic "translucent clouds" with fH2f_{\rm H2} \sim 1.Comment: 35 pages, 5 tables, 7 figures, accepted for publication in The Astrophysical Journal Supplements Serie

    Diabetes by Air, Land, and Sea: Effect of Deployments on HbA1c and BMI

    Get PDF
    INTRODUCTION: Service members (SMs) in the United States (U.S.) Armed Forces have diabetes mellitus at a rate of 2-3%. Despite having a chronic medical condition, they have deployed to environments with limited medical support. Given the scarcity of data describing how they fare in these settings, we conducted a retrospective study analyzing the changes in glycated hemoglobin (HbA1c) and body mass index (BMI) before and after deployment. MATERIALS AND METHODS: SMs from the U.S. Army, Air Force, Navy, and Marine Corps with diabetes who deployed overseas were identified through the Military Health System (MHS) Management Analysis and Reporting Tool and the Defense Manpower Data Center. Laboratory and pharmaceutical data were obtained from the MHS Composite Health Care System and the Pharmacy Data Transaction Service, respectively. Paired t-tests were conducted to calculate changes in HbA1c and BMI before and after deployment. RESULTS: SMs with diabetes completed 11,325 deployments of greater than 90 days from 2005 to 2017. Of these, 474 (4.2%) SMs had both HbA1c and BMI measurements within 90 days prior to departure and within 90 days of return. Most (84.2%) required diabetes medications: metformin in 67.3%, sulfonylureas in 19.0%, dipeptidyl peptidase-4 inhibitors in 13.9%, and insulin in 5.5%. Most SMs deployed with an HbA1c \u3c 7.0% (67.1%), with a mean predeployment HbA1c of 6.8%. Twenty percent deployed with an HbA1c between 7.0 and 7.9%, 7.2% deployed with an HbA1c between 8.0 and 8.9%, and 5.7% deployed with an HbA1c of 9.0% or higher. In the overall population and within each military service, there was no significant change in HbA1c before and after deployment. However, those with predeployment HbA1c \u3c 7.0% experienced a rise in HbA1c from 6.2 to 6.5% (P \u3c 0.001), whereas those with predeployment HbA1c values ≥7.0% experienced a decline from 8.0 to 7.5% (P \u3c 0.001). Those who deployed between 91 and 135 days had a decline in HbA1c from 7.1 to 6.7% (P = 0.010), but no significant changes were demonstrated in those with longer deployment durations. BMI declined from 29.6 to 29.3 kg/m2 (P \u3c 0.001), with other significant changes seen among those in the Army, Navy, and deployment durations up to 315 days. CONCLUSIONS: Most SMs had an HbA1c \u3c 7.0%, suggesting that military providers appropriately selected well-managed SMs for deployment. HbA1c did not seem to deteriorate during deployment, but they also did not improve despite a reduction in BMI. Concerning trends included the deployment of some SMs with much higher HbA1c, utilization of medications with adverse safety profiles, and the lack of HbA1c and BMI evaluation proximal to deployment departures and returns. However, for SMs meeting adequate glycemic targets, we demonstrated that HbA1c remained stable, supporting the notion that some SMs may safely deploy with diabetes. Improvement in BMI may compensate for factors promoting hyperglycemia in a deployed setting, such as changes in diet and medication availability. Future research should analyze in a prospective fashion, where a more complete array of diabetes and readiness-related measures to comprehensively evaluate the safety of deploying SMs with diabetes

    Rapid radiocarbon (14C) analysis of coral and carbonate samples using a continuous-flow accelerator mass spectrometry (CFAMS) system

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA4212, doi:10.1029/2011PA002174.Radiocarbon analyses of carbonate materials provide critical information for understanding the last glacial cycle, recent climate history and paleoceanography. Methods that reduce the time and cost of radiocarbon (14C) analysis are highly desirable for large sample sets and reconnaissance type studies. We have developed a method for rapid radiocarbon analysis of carbonates using a novel continuous-flow accelerator mass spectrometry (CFAMS) system. We analyzed a suite of deep-sea coral samples and compared the results with those obtained using a conventional AMS system. Measurement uncertainty is <0.02 Fm or 160 Ryr for a modern sample and the mean background was 37,800 Ryr. Radiocarbon values were repeatable and in good agreement with those from the conventional AMS system. Sample handling and preparation is relatively simple and the method offered a significant increase in speed and cost effectiveness. We applied the method to coral samples from the Eastern Pacific Ocean to obtain an age distribution and identify samples for further analysis. This paper is intended to update the paleoceanographic community on the status of this new method and demonstrate its feasibility as a choice for rapid and affordable radiocarbon analysis.This work was performed under NSF Cooperative Agreement OCE‐0753487, and also NSF‐OPP awards 0636787 and 0944474

    A high-performance 14C accelerator mass spectrometry system

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2010. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 52 (2010): 228-235.A new and unique radiocarbon accelerator mass spectrometry (AMS) facility has been constructed at the Woods Hole Oceanographic Institution. The defining characteristic of the new system is its large-gap optical elements that provide a larger-than-standard beam acceptance. Such a system is ideally suited for high-throughput, high-precision measurements of 14C. Details and performance of the new system are presented

    Science Extraction from TESS Observations of Known Exoplanet Hosts

    Full text link
    The transit method of exoplanet discovery and characterization has enabled numerous breakthroughs in exoplanetary science. These include measurements of planetary radii, mass-radius relationships, stellar obliquities, bulk density constraints on interior models, and transmission spectroscopy as a means to study planetary atmospheres. The Transiting Exoplanet Survey Satellite (TESS) has added to the exoplanet inventory by observing a significant fraction of the celestial sphere, including many stars already known to host exoplanets. Here we describe the science extraction from TESS observations of known exoplanet hosts during the primary mission. These include transit detection of known exoplanets, discovery of additional exoplanets, detection of phase signatures and secondary eclipses, transit ephemeris refinement, and asteroseismology as a means to improve stellar and planetary parameters. We provide the statistics of TESS known host observations during Cycle 1 & 2, and present several examples of TESS photometry for known host stars observed with a long baseline. We outline the major discoveries from observations of known hosts during the primary mission. Finally, we describe the case for further observations of known exoplanet hosts during the TESS extended mission and the expected science yield.Comment: 12 pages, 7 figures, accepted for publication in PAS

    Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems

    Get PDF
    The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.Comment: 138 pages, 8 Figures, 5 Tables. Accepted for publications in the Astrophysical Journa

    TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844

    Full text link
    Data from the newly-commissioned \textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of 1.32±0.021.32\pm 0.02 RR_\oplus and orbits the star every 11 hours. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I=11.9I=11.9, K=9.1K=9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase, using data from the pipelines at the TESS Science Office and at the TESS Science Processing Operations Cente

    Planetary Candidates Observed by Kepler IV: Planet Sample From Q1-Q8 (22 Months)

    Get PDF
    We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 Threshold Crossing Events (TCEs), 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOI) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2,738 Kepler planet candidates distributed across 2,017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ~40% of the sample with Rp~1 Rearth and represent ~40% of the low equilibrium temperature (Teq<300 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample.Comment: 12 pages, 8 figures, Accepted ApJ Supplemen
    corecore