3,102 research outputs found

    Comparison of electric dipole moments and the Large Hadron Collider for probing CP violation in triple boson vertices

    Get PDF
    CP violation from physics beyond the Standard Model may reside in triple boson vertices of the electroweak theory. We review the effective theory description and discuss how CP violating contributions to these vertices might be discerned by electric dipole moments (EDM) or diboson production at the Large Hadron Collider (LHC). Despite triple boson CP violating interactions entering EDMs only at the two-loop level, we find that EDM experiments are generally more powerful than the diboson processes. To give example to these general considerations we perform the comparison between EDMs and collider observables within supersymmetric theories that have heavy sfermions, such that substantive EDMs at the one-loop level are disallowed. EDMs generally remain more powerful probes, and next-generation EDM experiments may surpass even the most optimistic assumptions for LHC sensitivities.Comment: 26 pages, 14 figures, published version with more argument

    Survey of vector-like fermion extensions of the Standard Model and their phenomenological implications

    Full text link
    With the renewed interest in vector-like fermion extensions of the Standard Model, we present here a study of multiple vector-like theories and their phenomenological implications. Our focus is mostly on minimal flavor conserving theories that couple the vector-like fermions to the SM gauge fields and mix only weakly with SM fermions so as to avoid flavor problems. We present calculations for precision electroweak and vector-like state decays, which are needed to investigate compatibility with currently known data. We investigate the impact of vector-like fermions on Higgs boson production and decay, including loop contributions, in a wide variety of vector-like extensions and their parameter spaces.Comment: 43 pages, 17 figures; v2: text modified to improve readability, references added, journal versio

    Fish-habitat relationships in the Tonawanda and Johnson Creek Watersheds of Western New York State, USA

    Get PDF
    Warm water stream fish assemblages (2005) and habitat variables (2004 and 2005) were examined from May to September at 108 sites in the Tonawanda and Johnson Creek Watersheds of Western New York. Seventy species and \u3e 27,500 fishes were identified; ~98% were from Families Cyprinidae, Centrarchidae, Catostomidae and Percidae. Data were analyzed at 16 spatial scales using best subsets and backward stepwise multiple linear regression to explore associations between individual fish species ≥9% of total catch and fish assemblage variables [catch per unit effort (CPUE), species richness, Simpson’s diversity] with six habitat variables (pool type, maximum depth, substrate size, instream wood, bank cover, aquatic vegetation). CPUE was the only fish assemblage variable related to habitat variables, especially aquatic vegetation and pool type. Only two species (johnny darter, Etheostoma nigrum; round goby, Neogobius melanostomus) were significantly associated with habitat variables. The results reflected inherent difficulties understanding the complexities of habitat use by warm water stream fishes and their assemblages and how to manage them on a broad scale

    Higgs Boson Exempt No-Scale Supersymmetry and its Collider and Cosmology Implications

    Get PDF
    One of the most straightforward ways to address the flavor problem of low-energy supersymmetry is to arrange for the scalar soft terms to vanish simultaneously at a scale McM_{c} much larger than the electroweak scale. This occurs naturally in a number of scenarios, such as no-scale models, gaugino mediation, and several models with strong conformal dynamics. Unfortunately, the most basic version of this approach that incorporates gaugino mass unification and zero scalar masses at the grand unification scale is not compatible with collider and dark matter constraints. However, experimental constraints can be satisfied if we exempt the Higgs bosons from flowing to zero mass value at the high scale. We survey the theoretical constructions that allow this, and investigate the collider and dark matter consequences. A generic feature is that the sleptons are relatively light. Because of this, these models frequently give a significant contribution to the anomalous magnetic moment of the muon, and neutralino-slepton coannihilation can play an important role in obtaining an acceptable dark matter relic density. Furthermore, the light sleptons give rise to a large multiplicity of lepton events at colliders, including a potentially suggestive clean trilepton signal at the Tevatron, and a substantial four lepton signature at the LHC.Comment: 36 pages, 16 figure

    Next Generation Higgs Bosons: Theory, Constraints and Discovery Prospects at the Large Hadron Collider

    Get PDF
    Particle physics model building within the context of string theory suggests that further copies of the Higgs boson sector may be expected. Concerns regarding tree-level flavor changing neutral currents are easiest to allay if little or no couplings of next generation Higgs bosons are allowed to Standard Model fermions. We detail the resulting general Higgs potential and mass spectroscopy in both a Standard Model extension and a supersymmetric extension. We present the important experimental constraints from meson-meson mixing, loop-induced bsγb\to s\gamma decays and LEP2 direct production limits. We investigate the energy range of valid perturbation theory of these ideas. In the supersymmetric context we present a class of examples that marginally aids the fine-tuning problem for parameter space where the lightest Higgs boson mass is greater than the Standard Model limit of 114 GeV. Finally, we study collider physics signatures generic to next generation Higgs bosons, with special emphasis on AhhhZ4b+2lAh\to hhZ\to 4b+2l signal events, and describe the capability of discovery at the Large Hadron Collider.Comment: 43 pages, 12 figures; v3: minor corrections, published in Physical Review

    Propulsion Controlled Aircraft design and development

    Get PDF
    This paper describes the design, development, and ground testing of the propulsion controlled aircraft (PCA) flight control system. A backup flight control system which uses only engine thrust, the PCA system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The objective of the program was to investigate, in flight, the throttles-only control capability of the F-15, using manual control, and also an augmented PCA mode in which computer-controlled thrust was used for flight control. The objective included PCA operation in up-and-away flight and, if performance was adequate, a secondary objective to make actual PCA landings. The PCA design began with a feasibility study which evaluated many control law designs. The study was done using off-line control analysis, simulation, and on-line manned flight simulator tests. Control laws, cockpit displays, and cockpit controls were evaluated by NASA test pilots. A flight test baseline configuration was selected based on projected flight performance, applicability to transport and fighter aircraft, and funding costs. During the PCA software and hardware development, the initial design was updated as data became available from throttle-only flight experiments conducted by NASA on the F-15. This information showed basic airframe characteristics that were not observed in the F-15 flight simulator and resulted in several design changes. After the primary objectives of the PCA flight testing were accomplished, additional PCA modes of operation were developed and implemented. The evolution of the PCA system from the initial feasibility study, control law design, simulation, hardware-in-the-loop tests, pilot-in-the-loop tests, and ground tests is presented

    The importance of tau leptons for supersymmetry searches at the Tevatron

    Get PDF
    Supersymmetry is perhaps most effectively probed at the Tevatron through production and decay of weak gauginos. Most of the analyses of weak gaugino observables require electrons or muons in the final state. However, it is possible that the gauginos will decay primarily to tau leptons, thus complicating the search for supersymmetry. The motivating reasons for high tau multiplicity final states are discussed in three approaches to supersymmetry model building: minimal supergravity, gauge mediated supersymmetry breaking, and more minimal supersymmetry. The concept of ``e/mu/tau candidate'' is introduced, and an observable with three e/mu/tau candidates is defined in analog to the trilepton observable. The maximum mass reach for supersymmetry is then estimated when gaugino decays to tau leptons have full branching fraction.Comment: 9 pages, latex, 2 figures. Presented at the D0 New Phenomena Workshop, UC Davis, 26-28 March 199

    First-Order Electroweak Phase Transition in the Standard Model with a Low Cutoff

    Full text link
    We study the possibility of a first-order electroweak phase transition (EWPT) due to a dimension-six operator in the effective Higgs potential. In contrast with previous attempts to make the EWPT strongly first-order as required by electroweak baryogenesis, we do not rely on large one-loop thermally generated cubic Higgs interactions. Instead, we augment the Standard Model (SM) effective theory with a dimension-six Higgs operator. This addition enables a strong first-order phase transition to develop even with a Higgs boson mass well above the current direct limit of 114 GeV. The phi^6 term can be generated for instance by strong dynamics at the TeV scale or by integrating out heavy particles like an additional singlet scalar field. We discuss conditions to comply with electroweak precision constraints, and point out how future experimental measurements of the Higgs self couplings could test the idea.Comment: 5 pages, 4 figures. v2: corrected typos, improved discussion of the case lambda<0 and added references. To be published in PR
    corecore