38,592 research outputs found

    The role of magnetic fields in the scattering of p-modes

    Get PDF
    Aims. We determine the direct and indirect effects of magnetic field on p-mode scattering. Methods. We solve a set of magnetohydrodynamic equations using the Born approximation to determine phase shifts in p-modes due to a region of inhomogeneity. The region of inhomogeneity is a magnetic flux tube with the characteristics of flaring field lines. This enables us to investigate the magnetic field effects on the phase shifts. Results. The magnetic configuration of our flux tube model plays a vital role in the phase shifts of p-modes. The suppression of sound speed and pressure within the flux tube region is not the only factor to consider in the scattering of p-modes. There is a direct effect of the magnetic fields caused by the flaring of field lines on phase shifts

    Sensitivity of p-mode absorption on magnetic region properties and kernel functions

    No full text
    Aims. Magnetohydrodynamic (MHD) sausage tube waves are excited in magnetic flux tubes by p-mode forcing. These tube waves carry energy away from the p-mode cavity which results in a source of absorption. We wish to see the effect of an ensemble of randomly distributed thin magnetic flux tubes on the absorption of p-modes for the model plage region and also study the effect of the spacial weighting function on the theoretically calculated absorption coefficients. Methods. We calculate the absorption coefficients of p modes for a model plage, assumed to consist of an ensemble of many thin magnetic flux tubes with randomly distributed plasma properties. Each magnetic flux tube in the ensemble is modelled as axisymmetric, non-interacting, vertically oriented and untwisted. Results. We find that the magnitude and the form of the absorption coefficient is sensitive to the plasma-beta of the tubes which is consistent with previous work. Both the random distribution used to model the ensemble of flux tubes and the spatial weighting function inherent to the measurement of the absorption affect the absorption. As the width of the weighting function increases, the absorption increases

    Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach

    Full text link
    Following the semiclassical formalism of Strutinsky et al., we have obtained the complete eigenvalue spectrum for a particle enclosed in an infinitely high spheroidal cavity. Our spheroidal trace formula also reproduces the results of a spherical billiard in the limit η→1.0\eta\to1.0. Inclusion of repetition of each family of the orbits with reference to the largest one significantly improves the eigenvalues of sphere and an exact comparison with the quantum mechanical results is observed upto the second decimal place for kR0≄7kR_{0}\geq{7}. The contributions of the equatorial, the planar (in the axis of symmetry plane) and the non-planar(3-Dimensional) orbits are obtained from the same trace formula by using the appropriate conditions. The resulting eigenvalues compare very well with the quantum mechanical eigenvalues at normal deformation. It is interesting that the partial sum of equatorial orbits leads to eigenvalues with maximum angular momentum projection, while the summing of planar orbits leads to eigenvalues with Lz=0L_z=0 except for L=1. The remaining quantum mechanical eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few spurious eigenvalues arise in these partial sums. This result establishes the important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure

    Decision Sheet and Learning Diary: New Tools for Improved Learning Through the Case Method

    Get PDF
    Of the three phases of learning through the case method, instructors have focused on the in-class phase in training of both teachers and participants. The other two phases, pre-class preparation and post class-reflection, have not received much attention leading to lack of exploitation of the full learning potential from the method. This paper shares continued efforts to conceptualize and develop two tools, decision sheet and learning diary, to strengthen the two phases. These were designed and tested in three executive development programmes. The results and our reflections suggest that the tools enhance the process of learning and the learning itself.

    Large amplitude oscillation of an erupting filament as seen in EUV, H-alpha and microwave observations

    Get PDF
    We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi (Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (≈1 km s−1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 km s−1 and 15 000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated

    A Simple Method for Computing the Non-Linear Mass Correlation Function with Implications for Stable Clustering

    Get PDF
    We propose a simple and accurate method for computing analytically the mass correlation function for cold dark matter and scale-free models that fits N-body simulations over a range that extends from the linear to the strongly non-linear regime. The method, based on the dynamical evolution of the pair conservation equation, relies on a universal relation between the pair-wise velocity and the smoothed correlation function valid for high and low density models, as derived empirically from N-body simulations. An intriguing alternative relation, based on the stable-clustering hypothesis, predicts a power-law behavior of the mass correlation function that disagrees with N-body simulations but conforms well to the observed galaxy correlation function if negligible bias is assumed. The method is a useful tool for rapidly exploring a wide span of models and, at the same time, raises new questions about large scale structure formation.Comment: 10 pages, 3 figure

    Dark Energy and the Statistical Study of the Observed Image Separations of the Multiply Imaged Systems in the CLASS Statistical Sample

    Full text link
    The present day observations favour a universe which is flat, accelerated and composed of ∌1/3\sim 1/3 matter (baryonic + dark) and ∌2/3\sim 2/3 of a negative pressure component, usually referred to as dark energy or quintessence. The Cosmic Lens All Sky Survey (CLASS), the largest radio-selected galactic mass scale gravitational lens search project to date, has resulted in the largest sample suitable for statistical analyses. In the work presented here, we exploit observed image separations of the multiply imaged lensed radio sources in the sample. We use two different tests: (1) image separation distribution function n(Δξ)n(\Delta\theta) of the lensed radio sources and (2) {\dtheta}_{\mathrm{pred}} vs {\dtheta}_{\mathrm{obs}} as observational tools to constrain the cosmological parameters ww and \Om. The results are in concordance with the bounds imposed by other cosmological tests.Comment: 20 pages latex; Modified " Results and Discussion " section, new references adde

    Clustering as an example of optimizing arbitrarily chosen objective functions

    Get PDF
    This paper is a reflection upon a common practice of solving various types of learning problems by optimizing arbitrarily chosen criteria in the hope that they are well correlated with the criterion actually used for assessment of the results. This issue has been investigated using clustering as an example, hence a unified view of clustering as an optimization problem is first proposed, stemming from the belief that typical design choices in clustering, like the number of clusters or similarity measure can be, and often are suboptimal, also from the point of view of clustering quality measures later used for algorithm comparison and ranking. In order to illustrate our point we propose a generalized clustering framework and provide a proof-of-concept using standard benchmark datasets and two popular clustering methods for comparison
    • 

    corecore