96 research outputs found
The MGX framework for microbial community analysis
Jaenicke S. The MGX framework for microbial community analysis. Bielefeld: UniversitÀt Bielefeld; 2020
Complete Genome Sequence of the Type Strain Corynebacterium testudinoris DSM 44614, Recovered from Necrotic Lesions in the Mouth of a Tortoise
The complete genome sequence of the type strain Corynebacterium testudinoris DSM 44614 from the mouth of a tortoise comprises 2,721,226 bp with a mean G+C content of 63.14%. The automatic annotation of the genome sequence revealed 4 rRNA operons, 51 tRNA genes, 7 other RNA genes, and 2,561 protein-coding regions.Medical Microbiology and Genomics fund (eKVV 200937)Germany. Federal Ministry of Education and Research (German Network for Bioinformatics Intrastructure Initiative FKZ 031A533A
Virulence Factor Genes Detected in the Complete Genome Sequence of Corynebacterium uterequi DSM 45634, Isolated from the Uterus of a Maiden Mare
The complete genome sequence of the type strain Corynebacterium uterequi DSM 45634 from an equine urogenital tract specimen comprises 2,419,437 bp and 2,163 protein-coding genes. Candidate virulence factors are homologs of DIP0733, DIP1281, and DIP1621 from Corynebacterium diphtheriae and of sialidase precursors from Trueperella pyogenes and Chlamydia trachomatis.Medical Microbiology and Genomics fund (eKVV 200937)Germany. Federal Ministry of Education and Research (German Network for Bioinformatics Intrastructure Initiative FKZ 031A533A
Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity
Smits THM, Jaenicke S, Rezzonico F, et al. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T) and comparative genomic insights into plant pathogenicity. BMC Genomics. 2010;11(1): 2.Background: Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi) pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results: The genome of the type strain of E. pyrifoliae strain DSM 12163(T), was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions: The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria
Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient
Schröder J, Maus I, Meyer K, et al. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient. BMC Genomics. 2012;13(1): 141.BACKGROUND: Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen.
RESULTS: The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. CONCLUSIONS: The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia
Recommended from our members
Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms
Background: In recent years biogas plants in Germany have been supposed to be involved in amplification and
dissemination of pathogenic bacteria causing severe infections in humans and animals. In particular, biogas plants
are discussed to contribute to the spreading of Escherichia coli infections in humans or chronic botulism in cattle
caused by Clostridium botulinum. Metagenome datasets of microbial communities from an agricultural biogas plant
as well as from anaerobic lab-scale digesters operating at different temperatures and conditions were analyzed for
the presence of putative pathogenic bacteria and virulence determinants by various bioinformatic approaches.
Results: All datasets featured a low abundance of reads that were taxonomically assigned to the genus Escherichia
or further selected genera comprising pathogenic species. Higher numbers of reads were taxonomically assigned to
the genus Clostridium. However, only very few sequences were predicted to originate from pathogenic clostridial
species. Moreover, mapping of metagenome reads to complete genome sequences of selected pathogenic
bacteria revealed that not the pathogenic species itself, but only species that are more or less related to pathogenic
ones are present in the fermentation samples analyzed. Likewise, known virulence determinants could hardly be
detected. Only a marginal number of reads showed similarity to sequences described in the Microbial Virulence
Database MvirDB such as those encoding protein toxins, virulence proteins or antibiotic resistance determinants.
Conclusions: Findings of this first study of metagenomic sequence reads of biogas producing microbial
communities suggest that the risk of dissemination of pathogenic bacteria by application of digestates from biogas
fermentations as fertilizers is low, because obtained results do not indicate the presence of putative pathogenic
microorganisms in the samples analyzed
Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors
Maus I, Rumming M, Bergmann I, et al. Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors. Biotechnology for Biofuels. 2018;11(1): 167
Microbial diversity in different compartments of an aquaponics system
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Aquaponics is a solution for sustainable production of fish and plants in a single semi-closed system, where nutrient-rich water from the aquaculture provides nutrients for plant growth. We examined the microbial communities within an experimental aquaponics system. Whereas the fish feces contained a separate community dominated by bacteria of the genus Cetobacterium, the samples from plant roots, biofilter, and periphyton were more similar to each other, while the communities were more diverse. Detailed examination of the data gave the first indications to functional groups of organisms in the different compartments of the aquaponic system. As other nitrifiers other than members of the genus Nitrospira were only present at low numbers, it was anticipated that Nitrospirae may perform the nitrification process in the biofilm
ReadXplorer 2 - detailed read mapping analysis and visualization from one single source
Hilker R, Stadermann KB, Schwengers O, et al. ReadXplorer 2 - detailed read mapping analysis and visualization from one single source. Bioinformatics. 2016;32(24):3702-3708.Motivation:
The vast amount of already available and currently generated read mapping data re-quires comprehensive visualization, and should benefit from bioinformatics tools offering a wide spec-trum of analysis functionality from just one source. Appropriate handling of multiple mapped reads during mapping analyses remains an issue that demands improvement.
Results:
The capabilities of the read mapping analysis and visualization tool ReadXplorer were vastly enhanced. Here, we present an even finer granulated read mapping classification, improving the level of detail for analyses and visualizations. The spectrum of automatic analysis functions has been broadened to include genome rearrangement detection as well as correlation analysis between two mapping data sets. Existing functions were refined and enhanced, namely the computation of differ-entially expressed genes, the read count and normalization analysis and the transcription start site (TSS) detection. Additionally, ReadXplorer 2 features a highly improved support for large eukaryotic data sets and a command line version, enabling its integration into workflows. Finally, the new version is now able to display any kind of tabular results from other bioinformatics tools.
Availability:
http://www.readxplorer.or
Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions
Stolze Y, Zakrzewski M, Maus I, et al. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels. 2015;8(1): 14.Background
Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools.
Results
High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2T revealed that dominant methanogens within the dry fermentation process were highly related to the reference.
Conclusions
Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2T dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters
- âŠ