8,923 research outputs found
INITIAL CHARACTERIZATION OF MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) CLASS IIB EXON 2 IN AN ENDANGERED RATTLESNAKE, THE EASTERN MASSASAUGA (SISTRURUS CATENATUS)
Genes of the major histocompatibility complex (MHC) play an important role in the vertebrate immune system and exhibit remarkably high levels of polymorphism, maintained by strong balancing selection. While the conservation implications of MHC variation have been explored in a variety of vertebrates, non-avian reptiles (most notably snakes) have received less attention. To address this gap and take the first steps toward more extensive population-level analyses, we cloned and sequenced MHC IIB exon 2 in an endangered rattlesnake, the Eastern Massasauga (Sistrurus catenatus). Based on three individuals, we found evidence of at least four putatively functional loci. These sequences exhibited relatively high levels of variation and significantly higher rates of nonsynonymous to synonymous substitutions, especially within the antigen-binding sites, indicating strong positive selection. Phylogenetic analysis revealed a pattern of trans-species polymorphism, also suggesting positive selection. These results contribute to our understanding of MHC variation in non-avian reptiles and form a basis for more studies of MHC variation in snakes of conservation concern
Phase transition in inelastic disks
This letter investigates the molecular dynamics of inelastic disks without
external forcing. By introducing a new observation frame with a rescaled time,
we observe the virtual steady states converted from asymptotic energy
dissipation processes. System behavior in the thermodynamic limit is carefully
investigated. It is found that a phase transition with symmetry breaking occurs
when the magnitude of dissipation is greater than a critical value.Comment: 9 pages, 6 figure
Uncertainty reconciles complementarity with joint measurability
The fundamental principles of complementarity and uncertainty are shown to be
related to the possibility of joint unsharp measurements of pairs of
noncommuting quantum observables. A new joint measurement scheme for
complementary observables is proposed. The measured observables are represented
as positive operator valued measures (POVMs), whose intrinsic fuzziness
parameters are found to satisfy an intriguing pay-off relation reflecting the
complementarity. At the same time, this relation represents an instance of a
Heisenberg uncertainty relation for measurement imprecisions. A
model-independent consideration show that this uncertainty relation is
logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and
uncertainty - entangled in joint path-interference measurements". This new
version focuses on the "measurement uncertainty relation" and its role,
disentangling this issue from the special context of path interference
duality. See also http://www.vjquantuminfo.org (October 2003
Breakdown of self-organized criticality
We introduce two sandpile models which show the same behavior of real
sandpiles, that is, an almost self-organized critical behavior for small
systems and the dominance of large avalanches as the system size increases. The
systems become fully self-organized critical, with the critical exponents of
the Bak, Tang and Wiesenfeld model, as the system parameters are changed,
showing that these systems can make a bridge between the well known theoretical
and numerical results and what is observed in real experiments. We find that a
simple mechanism determines the boundary where self-organized can or cannot
exist, which is the presence of local chaos.Comment: 3 pages, 4 figure
Large phenotype jumps in biomolecular evolution
By defining the phenotype of a biopolymer by its active three-dimensional
shape, and its genotype by its primary sequence, we propose a model that
predicts and characterizes the statistical distribution of a population of
biopolymers with a specific phenotype, that originated from a given genotypic
sequence by a single mutational event. Depending on the ratio g0 that
characterizes the spread of potential energies of the mutated population with
respect to temperature, three different statistical regimes have been
identified. We suggest that biopolymers found in nature are in a critical
regime with g0 in the range 1-6, corresponding to a broad, but not too broad,
phenotypic distribution resembling a truncated Levy flight. Thus the biopolymer
phenotype can be considerably modified in just a few mutations. The proposed
model is in good agreement with the experimental distribution of activities
determined for a population of single mutants of a group I ribozyme.Comment: to appear in Phys. Rev. E; 7 pages, 6 figures; longer discussion in
VII, new fig.
Slowly driven sandpile formation with granular mixtures
We introduce a one-dimensional sandpile model with different particle types and an infinitesimal driving rate. The parameters for the model are the N^2 critical slopes for one type of particle on top of another. The model is trivial when N=1, but for N=2 we observe four broad classes of sandpile structure in different regions of the parameter space. We describe and explain the behaviour of each of these classes, giving quantitative analysis wherever possible. The behaviour of sandpiles with N>2 essentially consists of combinations of these four classes. We investigate the model's robustness and highlight the key areas that any experiment designed to reproduce these results should focus on
Inelastic Collapse of Three Particles
A system of three particles undergoing inelastic collisions in arbitrary
spatial dimensions is studied with the aim of establishing the domain of
``inelastic collapse''---an infinite number of collisions which take place in a
finite time. Analytic and simulation results show that for a sufficiently small
restitution coefficient, , collapse can
occur. In one dimension, such a collapse is stable against small perturbations
within this entire range. In higher dimensions, the collapse can be stable
against small variations of initial conditions, within a smaller range,
.Comment: 6 pages, figures on request, accepted by PR
Demonstration of the Complementarity of One- and Two-Photon Interference
The visibilities of second-order (single-photon) and fourth-order
(two-photon) interference have been observed in a Young's double-slit
experiment using light generated by spontaneous parametric down-conversion and
a photon-counting intensified CCD camera. Coherence and entanglement underlie
one-and two-photon interference, respectively. As the effective source size is
increased, coherence is diminished while entanglement is enhanced, so that the
visibility of single-photon interference decreases while that of two-photon
interference increases. This is the first experimental demonstration of the
complementarity between single- and two-photon interference (coherence and
entanglement) in the spatial domain.Comment: 21 pages, 7 figure
Heap Formation in Granular Media
Using molecular dynamics (MD) simulations, we find the formation of heaps in
a system of granular particles contained in a box with oscillating bottom and
fixed sidewalls. The simulation includes the effect of static friction, which
is found to be crucial in maintaining a stable heap. We also find another
mechanism for heap formation in systems under constant vertical shear. In both
systems, heaps are formed due to a net downward shear by the sidewalls. We
discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9
Size Segregation of Granular Matter in Silo Discharges
We present an experimental study of segregation of granular matter in a
quasi-two dimensional silo emptying out of an orifice. Size separation is
observed when multi-sized particles are used with the larger particles found in
the center of the silo in the region of fastest flow. We use imaging to study
the flow inside the silo and quantitatively measure the concentration profiles
of bi-disperse beads as a function of position and time. The angle of the
surface is given by the angle of repose of the particles, and the flow occurs
in a few layers only near the top of this inclined surface. The flowing region
becomes deeper near the center of the silo and is confined to a parabolic
region centered at the orifice which is approximately described by the
kinematic model. The experimental evidence suggests that the segregation occurs
on the surface and not in the flow deep inside the silo where velocity
gradients also are present. We report the time development of the
concentrations of the bi-disperse particles as a function of size ratios, flow
rate, and the ratio of initial mixture. The qualitative aspects of the observed
phenomena may be explained by a void filling model of segregation.Comment: 6 pages, 10 figures (gif format), postscript version at
http://physics.clarku.edu/~akudrolli/nls.htm
- …
