2,146 research outputs found

    Quantum Markov chains associated with open quantum random walks

    Get PDF
    In this paper we construct (nonhomogeneous) quantum Markov chains associated with open quantum random walks. The quantum Markov chain, like the classical Markov chain, is a fundamental tool for the investigation of the basic properties such as reducibility/irreducibility, recurrence/transience, accessibility, ergodicity, etc, of the underlying dynamics. Here we focus on the discussion of the reducibility and irreducibility of open quantum random walks via the corresponding quantum Markov chains. Particularly we show that the concept of reducibility/irreducibility of open quantum random walks in this approach is equivalent to the one previously done by Carbone and Pautrat. We provide with some examples. We will see also that the classical Markov chains can be reconstructed as quantum Markov chains.Comment: 30 page

    Quantum Markov Chains Associated with Unitary Quantum Walks

    Get PDF

    Group of automorphisms for strongly quasi invariant states

    Full text link
    For a *-automorphism group GG on a CC^*- or von Neumann algebra, we study the GG-quasi invariant states and their properties. The GG-quasi invariance or GG-strongly quasi invariance are weaker than the GG-invariance and have wide applications. We develop several properties for GG-strongly quasi invariant states. Many of them are the extensions of the already developed theories for GG-invariant states. Among others, we consider the relationship between the group GG and modular automorphism group, invariant subalgebras, ergodicity, modular theory, and abelian subalgebras. We provide with some examples to support the results.Comment: 25 page

    Maximized performance of dye solar cells on plastic: a combined theoretical and experimental optimization approach

    Get PDF
    We demonstrate that a combined optimization approach based on the sequential alternation of theoretical analysis and experimental realization gives rise to plastic supported dye solar cells for which both light harvesting efficiency and electron collection are maximized. Rationalized configurations with optimized light trapping and charge extraction are realized to achieve photoanodes on plastic prepared at low temperature, showing a power conversion efficiency of 8.55% and a short circuit photocurrent of 16.11 mA cm 2, unprecedented for plastic based dye solar cell devices. Furthermore, the corresponding fully flexible designs present stable mechanical properties after several bending cycles, displaying 7.79% power conversion efficiency, an average broadband internal quantum efficiency above 90%, and a short circuit photocurrent of 15.94 mA cm 2, which is the largest reported value for bendable cells of this sort to dateEuropean Union 307081, 622533Ministerio de Economía y Competitividad MAT2014-54852-R, MAT2011–2359

    Hydrogen effects on nanoindentation behavior of metallic glass ribbons

    Get PDF
    Recently, metallic glass (MG) membranes that are permeable to hydrogen have gained interest due to the increasing importance of hydrogen separation in a number of applications, e.g., hydrogen-powered fuel cells. An important issue in the context of MG membranes is the hydrogen-induced embrittlement and efforts to understand the role played by hydrogen in the mechanical properties, especially yielding and plastic deformation behavior, of MGs are being made. In this study, therefore, an attempt was made by performing nanoindentation tests with cube-corner and spherical indenter tips on a series of Ni–Nb–Zr amorphous alloy ribbons to investigate the hydrogen effects on nanohardness and pop-in behavior (Figure 1). Weight gain measurements after hydrogen charging and thermal desorption spectroscopy (TDS) studies (Figure 2) were utilized to identify how the total hydrogen is partitioned into mobile and immobile parts. These, in turn, indicate the significant role of hydrogen mobility in the amorphous structure on the mechanical properties. In high-Zr alloys containing immobile H, both hardness (H) and shear yielding stress (τmax) increase significantly; while in low-Zr alloys having only mobile hydrogen, decrease in hardness and τmax were noted (Figure 1). The changes in shear transformation zone (STZ) volume, estimated through cumulative analysis of τmax, caused by hydrogen absorption were also found to depend on hydrogen mobility such that immobile hydrogen reduces the STZ volume while mobile hydrogen increases it. *This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2013R1A1A2A10058551)

    Production of Transgenic Cloned Miniature Pigs with Membrane-bound Human Fas Ligand (FasL) by Somatic Cell Nuclear Transfer

    Get PDF
    Cell-mediated xenograft rejection, including NK cells and CD8+ CTL, is a major obstacle in successful pig-to-human xenotransplantation. Human CD8+ CTL and NK cells display high cytotoxicity for pig cells, mediated at least in part by the Fas/FasL pathway. To prevent cell-mediated xenocytotoxicity, a membrane-bound form of human FasL (mFasL) was generated as an inhibitor for CTL and NK cell cytotoxicity that could not be cleaved by metalloproteinase to produce putative soluble FasL. We produced two healthy transgenic pigs harboring the mFasL gene via somatic cell nuclear transfer (SCNT). In a cytotoxicity assay using transgenic clonal cell lines and transgenic pig ear cells, the rate of CD8+ CTL-mediated cytotoxicity was significantly reduced in transgenic pig's ear cells compared with that in normal minipig fetal fibroblasts. Our data indicate that grafts of transgenic pigs expressing membrane-bound human FasL control the cellular immune response to xenografts, creating a window of opportunity to facilitate xenograft survival

    Isolation and characterization of the outer membrane of Escherichia coli with autodisplayed Z-domains

    Get PDF
    Abstract“Autodisplay technology” is an expression technique used to display the various recombinant proteins on the outer membrane (OM) of Escherichia coli. The resulting autodisplayed Z-domain has been used to improve the sensitivity of immunoassays. In this work, a facile isolation method of the OM fraction of E. coli with autodisplayed Z-domains was presented using (1) an enzyme reaction for the hydrolysis of the peptidoglycan layer and (2) short centrifugation steps. The purity of the isolated OM fraction was analyzed. For the estimation of contamination with bacterial proteins from other parts of E. coli, Western blots of marker proteins for the OM (OmpA), periplasm (β-lactamase), inner membrane (SecA), and cytoplasm (β-galactosidase) were performed. Additionally, assays of marker components or enzymes from each part of E. coli were carried out including the OM (KDO), inner membrane (NADH oxidase), periplasm (β-lactamase), and cytoplasm (β-galactosidase). The yield of OM isolation using this new method was determined to be 80% of the total OM amount, with less than 1% being contaminants from other parts of E. coli
    corecore