9 research outputs found
Thermo-physical, thermal degradation, and flexural properties of betel nut husk fiber-reinforced vinyl ester composites
This study aims to investigate the thermo-physical, mechanical, and thermal degradation properties of betel nut husk (BNH) fiber reinforced vinyl ester (VE) composites. These properties were evaluated as a function of fiber maturity, fiber content, and fiber orientation. Thermo-physical properties were analyzed experimentally using a hot disk TPS method. The introduction of BNH was found to reduce the thermal conductivity of neat VE. The thermal conductivity and thermal diffusivity of BNH reinforced VE composites decreased with the increase in fiber content. Short fiber BNH reinforced VE composites showed the lowest thermal conductivity as compared to the unidirectional and random nonwoven composites. The TGA analysis shows lower resin transition peak for the BNH reinforced VE composites than the peak of neat VE. Fiber maturity had a notable effect on the flexural modulus of the BNH fiber reinforced VE composites. Incorporation of 10 wt% BNH fibers into the composite has increased the composites' flexural modulus by 46.37%. However, further increases in the fiber content reduced both flexural strength and modulus of the composites
Effect of alkali treatment on the physical, mechanical, and morphological properties of waste betel nut (Areca catechu) husk fibre
This study aims to determine the properties of waste betel nut husk (BNH) fiber as a potential alternative for reinforcement in polymer composites. The BNH fibres were subjected to alkali treatment using 5% sodium hydroxide. In this work, husk fibres extracted from betel nut fruit were characterized for its chemical composition, tensile properties, morphology, and interfacial shear strength. The cellulose content was increased with alkali treatment. Tensile strength and Young's modulus of BNH fibre dropped drastically with alkali treatment but with improvement in elongation at break of the fibre due to extraction of cementing materials of microfibrils in natural fibre, i.e. lignin and hemicellulose. SEM observations revealed that poor tensile strength and modulus were related to the cell wall thinning and deep pores in BNH fibre due to alkali treatment. Interfacial shear strength (IFSS) of alkali treated fibre was higher as compared to untreated BNH fibre due to the increase in fibre surface roughness with alkali treatment
Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre
This paper investigates the physical, thermal, mechanical and morphological properties of betel nut husk fibre, in order to assess their suitability as lignocellulosic reinforcement for polymer composites. Betel nut husk (BNH) fibres of three different stages of maturity were evaluated to study the effect of fibre maturity on the thermal, physical and mechanical properties of BNH fibre. The thermal stability of BNH fibre was studied using the thermogravimetric analysis (TGA) technique. It was found that the thermal stability of the BNH fibre is influenced by the maturity of the BNH fibre due to the different amounts of cellulose, hemicellulose, lignin, and moisture in the BNH fibre at each stage of maturity (raw, ripe, matured). The BNH fibres showed decrease in fibre length and fibre diameter, and increase in density with the increase in fibre maturity. SEM micrographs of BNH fibre surface revealed the existence of rough and perforated surface of BNH fibre. Whereas, the cross-sectional of the BNH fibre showed that the raw BNH fibres were observed with bigger lumen, whilst ripe BNH fibre exhibits a slightly smaller and elongated lumen. In contrast, matured BNH fibre showed more compact structures instead of hollow-like lumen structures. In terms of mechanical properties, the BNH fibre tensile properties were found to be comparable to coir and kenaf fibre, which have been widely used as reinforcement in polymer composites
Review on underutilized Malaysian agro-wastes as reinforcements in polymer composites.
This paper reviews a number of Malaysian agricultural wastes such as cocoa pod husk (CPH),
betel nut husk (BNH), and coffee hulls/husks (CH) with potential for use as reinforcement in
polymer composites. Some notable advantages exhibited by these agricultural wastes as
reinforcement in polymer composites, and their current utilization were discussed. Recent
attempts by several workers in utilizing CPH, BNH, and CH were also reviewed and elaborated
to find out the effect and further potential of incorporating these agro-wastes fibers in polymer
composites. Challenges such as compounding difficulties, storage issues and lack in deep
finding regarding these types of fibers are believed to be the factors that make CPH, BNH and
coffee hulls/husks fiber are still being underutilized in Malaysia
Effect of silica nanofiller in cross-linked polyethylene as electrical tree growth inhibitor
One of the main phenomena that contributes to the non-success of cable insulation made of cross-linked polyethylene (XLPE) is electrical treeing. To improve the XPLE cable insulation, the use of nanofiller has been introduced. Adding the nanofiller in the based composite offers better cable lifetime and resistance to deal with the cable failure. One of the potential nanofillers that can increase the insulation performance of XLPE cable is silica nanofiller. To this extent, the studies on silica nanofiller in XLPE are focusing on the impulse breakdown strength, dielectric loss, permittivity, space charge, alternating current (AC), and partial discharge. The studies reveal that the dielectric properties of the XLPE nanocomposite have significant improvement. Therefore, this work investigates the effect of various concentrations of silica nanofiller in XLPE composite as electrical tree inhibitor. The concentrations of silica nanofiller in XLPE were 0.25 wt%, 0.5 wt%, 0.75 wt%, 1.0 wt%, 1.25 wt%, 1.5 wt%, and 1.75 wt%. The silica nanofillers have 96%-99% purity, 20-30 nm sizes and the shapes are spherical. As a result, the XLPE composite containing 1.5 wt% silica nanofiller demonstrate higher tree inception voltage and detaining the tree propagation speed, which could be considered as an inhibitor medium of electrical tree growt
Effect of silica nanofiller in cross-linked polyethylene as electrical tree growth inhibitor
One of the main phenomena that contributes to the non-success of cable insulation made of cross-linked polyethylene (XLPE) is electrical treeing. To improve the XPLE cable insulation, the use of nanofiller has been introduced. Adding the nanofiller in the based composite offers better cable lifetime and resistance to deal with the cable failure. One of the potential nanofillers that can increase the insulation performance of XLPE cable is silica nanofiller. To this extent, the studies on silica nanofiller in XLPE are focusing on the impulse breakdown strength, dielectric loss, permittivity, space charge, alternating current (AC), and partial discharge. The studies reveal that the dielectric properties of the XLPE nanocomposite have significant improvement. Therefore, this work investigates the effect of various concentrations of silica nanofiller in XLPE composite as electrical tree inhibitor. The concentrations of silica nanofiller in XLPE were 0.25 wt%, 0.5 wt%, 0.75 wt%, 1.0 wt%, 1.25 wt%, 1.5 wt%, and 1.75 wt%. The silica nanofillers have 96%-99% purity, 20-30 nm sizes and the shapes are spherical. As a result, the XLPE composite containing 1.5 wt% silica nanofiller demonstrate higher tree inception voltage and detaining the tree propagation speed, which could be considered as an inhibitor medium of electrical tree growth
Characterization of chemically treated new natural cellulosic fibers from peduncle of Cocos nucifera l. Var typica
The aim of this study is to look into the effect of chemical treatments on fibers extracted from the unbranched portion of the peduncle of the coconut tree (Cocos nucifera L. Var typica) for use as reinforcement in polymer composites. The extracted coconut tree peduncle (CTP) fibers were treated with 5% alkali, 6% benzoyl peroxide, 0.5% potassium permanganate, and 1% stearic acid. The chemical composition, surface morphology, mechanical properties, crystallinity, and thermal decomposition of chemically treated CTP fibers were thoroughly investigated. The chemical analysis shows that fibers treated with 0.5% potassium permanganate had a maximum cellulose content of 58.05 wt% after hemicellulose, lignin, and wax were removed from the fiber. This has been due to the chemically treated fiber's improved crystallinity index, crystalline size, tensile strength, kinetic activation energy, and thermal stability. The existence of chemical functional groups is confirmed by Fourier transform infra-red analysis, and major elements such as carbon, nitrogen, and oxygen are quantified by energy dispersive X-ray spectroscopy analysis in chemically treated fibers. The surface of the fibers has become roughened as a result of chemical treatments, as shown by the morphological analysis performed using scanning electron microscopy. Among the chemical treatments tested, fibers treated with 0.5% potassium permanganate demonstrated superior thermo-mechanical properties for use as bio-reinforcement in high performance polymer composites